Cargando…

Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources

The large amount of biological data available in the current times, makes it necessary to use tools and applications based on sophisticated and efficient algorithms, developed in the area of bioinformatics. Further, access to high performance computing resources is necessary, to achieve results in r...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanussek, Maximilian, Bartusch, Felix, Krüger, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323933/
https://www.ncbi.nlm.nih.gov/pubmed/34283824
http://dx.doi.org/10.1371/journal.pcbi.1009244
_version_ 1783731335936868352
author Hanussek, Maximilian
Bartusch, Felix
Krüger, Jens
author_facet Hanussek, Maximilian
Bartusch, Felix
Krüger, Jens
author_sort Hanussek, Maximilian
collection PubMed
description The large amount of biological data available in the current times, makes it necessary to use tools and applications based on sophisticated and efficient algorithms, developed in the area of bioinformatics. Further, access to high performance computing resources is necessary, to achieve results in reasonable time. To speed up applications and utilize available compute resources as efficient as possible, software developers make use of parallelization mechanisms, like multithreading. Many of the available tools in bioinformatics offer multithreading capabilities, but more compute power is not always helpful. In this study we investigated the behavior of well-known applications in bioinformatics, regarding their performance in the terms of scaling, different virtual environments and different datasets with our benchmarking tool suite BOOTABLE. The tool suite includes the tools BBMap, Bowtie2, BWA, Velvet, IDBA, SPAdes, Clustal Omega, MAFFT, SINA and GROMACS. In addition we added an application using the machine learning framework TensorFlow. Machine learning is not directly part of bioinformatics but applied to many biological problems, especially in the context of medical images (X-ray photographs). The mentioned tools have been analyzed in two different virtual environments, a virtual machine environment based on the OpenStack cloud software and in a Docker environment. The gained performance values were compared to a bare-metal setup and among each other. The study reveals, that the used virtual environments produce an overhead in the range of seven to twenty-five percent compared to the bare-metal environment. The scaling measurements showed, that some of the analyzed tools do not benefit from using larger amounts of computing resources, whereas others showed an almost linear scaling behavior. The findings of this study have been generalized as far as possible and should help users to find the best amount of resources for their analysis. Further, the results provide valuable information for resource providers to handle their resources as efficiently as possible and raise the user community’s awareness of the efficient usage of computing resources.
format Online
Article
Text
id pubmed-8323933
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-83239332021-07-31 Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources Hanussek, Maximilian Bartusch, Felix Krüger, Jens PLoS Comput Biol Research Article The large amount of biological data available in the current times, makes it necessary to use tools and applications based on sophisticated and efficient algorithms, developed in the area of bioinformatics. Further, access to high performance computing resources is necessary, to achieve results in reasonable time. To speed up applications and utilize available compute resources as efficient as possible, software developers make use of parallelization mechanisms, like multithreading. Many of the available tools in bioinformatics offer multithreading capabilities, but more compute power is not always helpful. In this study we investigated the behavior of well-known applications in bioinformatics, regarding their performance in the terms of scaling, different virtual environments and different datasets with our benchmarking tool suite BOOTABLE. The tool suite includes the tools BBMap, Bowtie2, BWA, Velvet, IDBA, SPAdes, Clustal Omega, MAFFT, SINA and GROMACS. In addition we added an application using the machine learning framework TensorFlow. Machine learning is not directly part of bioinformatics but applied to many biological problems, especially in the context of medical images (X-ray photographs). The mentioned tools have been analyzed in two different virtual environments, a virtual machine environment based on the OpenStack cloud software and in a Docker environment. The gained performance values were compared to a bare-metal setup and among each other. The study reveals, that the used virtual environments produce an overhead in the range of seven to twenty-five percent compared to the bare-metal environment. The scaling measurements showed, that some of the analyzed tools do not benefit from using larger amounts of computing resources, whereas others showed an almost linear scaling behavior. The findings of this study have been generalized as far as possible and should help users to find the best amount of resources for their analysis. Further, the results provide valuable information for resource providers to handle their resources as efficiently as possible and raise the user community’s awareness of the efficient usage of computing resources. Public Library of Science 2021-07-20 /pmc/articles/PMC8323933/ /pubmed/34283824 http://dx.doi.org/10.1371/journal.pcbi.1009244 Text en © 2021 Hanussek et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hanussek, Maximilian
Bartusch, Felix
Krüger, Jens
Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title_full Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title_fullStr Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title_full_unstemmed Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title_short Performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
title_sort performance and scaling behavior of bioinformatic applications in virtualization environments to create awareness for the efficient use of compute resources
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323933/
https://www.ncbi.nlm.nih.gov/pubmed/34283824
http://dx.doi.org/10.1371/journal.pcbi.1009244
work_keys_str_mv AT hanussekmaximilian performanceandscalingbehaviorofbioinformaticapplicationsinvirtualizationenvironmentstocreateawarenessfortheefficientuseofcomputeresources
AT bartuschfelix performanceandscalingbehaviorofbioinformaticapplicationsinvirtualizationenvironmentstocreateawarenessfortheefficientuseofcomputeresources
AT krugerjens performanceandscalingbehaviorofbioinformaticapplicationsinvirtualizationenvironmentstocreateawarenessfortheefficientuseofcomputeresources