Cargando…

Prediction of hyaluronic acid target on sucrase-isomaltase (SI) with reverse docking and molecular dynamics simulations for inhibitors binding to SI

Auricularia cornea (E.) polysaccharide is an important component of A. cornea Ehrenb, a white mutant strain of Auricularia with biological activities, such as enhancement of human immune function and cancer prevention. The hyaluronic acids (HAs) are important components of the A. cornea polysacchari...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao, Qian, Keqing, Han, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323934/
https://www.ncbi.nlm.nih.gov/pubmed/34329325
http://dx.doi.org/10.1371/journal.pone.0255351
Descripción
Sumario:Auricularia cornea (E.) polysaccharide is an important component of A. cornea Ehrenb, a white mutant strain of Auricularia with biological activities, such as enhancement of human immune function and cancer prevention. The hyaluronic acids (HAs) are important components of the A. cornea polysaccharide and have extremely high medicinal value. In this study, we used HA to search the target protein sucrase-isomaltase (SI). In addition, we also performed molecular dynamics (MD) simulations to explore the binding of three inhibitors (HA, acarbose and kotalanol) to SI. The MD simulations indicated that the binding of the three inhibitors may induce the partial disappearance of α helix in residues 530–580. Hence, the hydrogen bond for Gly570-Asn572, which was near the catalytic base Asp471 in SI, was broken during the binding of the three inhibitors. We reveal a new inhibitor for SI and provide reasonable theoretical clues for inhibitor binding to SI.