Cargando…
Sensory coding and the causal impact of mouse cortex in a visual decision
Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium im...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324299/ https://www.ncbi.nlm.nih.gov/pubmed/34328419 http://dx.doi.org/10.7554/eLife.63163 |
_version_ | 1783731370920509440 |
---|---|
author | Zatka-Haas, Peter Steinmetz, Nicholas A Carandini, Matteo Harris, Kenneth D |
author_facet | Zatka-Haas, Peter Steinmetz, Nicholas A Carandini, Matteo Harris, Kenneth D |
author_sort | Zatka-Haas, Peter |
collection | PubMed |
description | Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role. |
format | Online Article Text |
id | pubmed-8324299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-83242992021-08-02 Sensory coding and the causal impact of mouse cortex in a visual decision Zatka-Haas, Peter Steinmetz, Nicholas A Carandini, Matteo Harris, Kenneth D eLife Neuroscience Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role. eLife Sciences Publications, Ltd 2021-07-30 /pmc/articles/PMC8324299/ /pubmed/34328419 http://dx.doi.org/10.7554/eLife.63163 Text en © 2021, Zatka-Haas et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Zatka-Haas, Peter Steinmetz, Nicholas A Carandini, Matteo Harris, Kenneth D Sensory coding and the causal impact of mouse cortex in a visual decision |
title | Sensory coding and the causal impact of mouse cortex in a visual decision |
title_full | Sensory coding and the causal impact of mouse cortex in a visual decision |
title_fullStr | Sensory coding and the causal impact of mouse cortex in a visual decision |
title_full_unstemmed | Sensory coding and the causal impact of mouse cortex in a visual decision |
title_short | Sensory coding and the causal impact of mouse cortex in a visual decision |
title_sort | sensory coding and the causal impact of mouse cortex in a visual decision |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324299/ https://www.ncbi.nlm.nih.gov/pubmed/34328419 http://dx.doi.org/10.7554/eLife.63163 |
work_keys_str_mv | AT zatkahaaspeter sensorycodingandthecausalimpactofmousecortexinavisualdecision AT steinmetznicholasa sensorycodingandthecausalimpactofmousecortexinavisualdecision AT carandinimatteo sensorycodingandthecausalimpactofmousecortexinavisualdecision AT harriskennethd sensorycodingandthecausalimpactofmousecortexinavisualdecision |