Cargando…

Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge

Wastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal....

Descripción completa

Detalles Bibliográficos
Autores principales: Domínguez, Jorge, Aira, Manuel, Crandall, Keith A., Pérez-Losada, Marcos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324770/
https://www.ncbi.nlm.nih.gov/pubmed/34330993
http://dx.doi.org/10.1038/s41598-021-95099-z
Descripción
Sumario:Wastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.