Cargando…

Effect of ganglioside combined with Chip Jiaji electro-acupuncture on Nogo-NgR signal pathway in SCI rats

At present, the effect of ganglioside combined with Jiaji electroacupuncture (Jiaji EA) on SCI still remains unclear. This study explores the effect of ganglioside combined with electroacupuncture on Nogo/NgR signal pathway in spinal cord tissue of spinal cord injury (SCI) rats. Basso Beattie Bresna...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Hongfeng, Wang, Hui, Liu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324963/
https://www.ncbi.nlm.nih.gov/pubmed/34354392
http://dx.doi.org/10.1016/j.sjbs.2021.02.031
Descripción
Sumario:At present, the effect of ganglioside combined with Jiaji electroacupuncture (Jiaji EA) on SCI still remains unclear. This study explores the effect of ganglioside combined with electroacupuncture on Nogo/NgR signal pathway in spinal cord tissue of spinal cord injury (SCI) rats. Basso Beattie Bresnahan (BBB) score was used to evaluate spinal cord function after modeling and 14 days post ganglioside and electroacupuncture treatment. RT-qPCR and western blot were performed to evaluate the expression levels of targets in spinal cord tissue. After 14 days of treatment, the BBB scores of Jiaji EA group, ganglioside group and combination group were all improved. The expression levels of IL-1β, IL-6 and TNF-α in Jiaji EA group, ganglioside group and combination group were significantly lower than those in model group. Both of mRNA and protein expression levels of Nogo-A, NgR and LINGO-1 in the model group were significantly higher than those in the Jiaji EA group, ganglioside group and combination group. Ganglioside combined with Jiaji EA has a stronger effect on promoting the recovery of nerve function. Its mechanism of action may be related to its inhibition of the expression of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α and Nogo-NgR signal pathway to promote neuronal growth. Our results will provide fundamental information for further SCI studies.