Cargando…
Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features
BACKGROUND: Antimicrobial peptides (AMPs) are oligopeptides that act as crucial components of innate immunity, naturally occur in all multicellular organisms, and are involved in the first line of defense function. Recent studies showed that AMPs perpetuate great potential that is not limited to ant...
Autores principales: | Singh, Onkar, Hsu, Wen-Lian, Su, Emily Chia-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325260/ https://www.ncbi.nlm.nih.gov/pubmed/34330209 http://dx.doi.org/10.1186/s12859-021-04305-2 |
Ejemplares similares
-
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022) -
CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides
por: Porto, William F., et al.
Publicado: (2012) -
ILeukin10Pred: A Computational Approach for Predicting IL-10-Inducing Immunosuppressive Peptides Using Combinations of Amino Acid Global Features
por: Singh, Onkar, et al.
Publicado: (2021) -
Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs
por: Lertampaiporn, Supatcha, et al.
Publicado: (2021) -
Optimization of a peptide extraction and LC–MS protocol for quantitative analysis of antimicrobial peptides
por: Chen, Wen, et al.
Publicado: (2018)