Cargando…
MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning
Recent advances in machine learning technologies and their applications have led to the development of diverse structure–property relationship models for crucial chemical properties. The solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the s...
Autores principales: | Lim, Hyuntae, Jung, YounJoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325294/ https://www.ncbi.nlm.nih.gov/pubmed/34332634 http://dx.doi.org/10.1186/s13321-021-00533-z |
Ejemplares similares
-
Delfos: deep learning model for prediction of solvation free energies in generic organic solvents
por: Lim, Hyuntae, et al.
Publicado: (2019) -
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
por: Alibakhshi, Amin, et al.
Publicado: (2021) -
Slow Dynamics of Ring Polymer Melts by Asymmetric Interaction of Threading Configuration: Monte Carlo Study of a Dynamically Constrained Lattice Model
por: Lee, Eunsang, et al.
Publicado: (2019) -
Atomistic characterization of the active-site solvation dynamics of a model photocatalyst
por: van Driel, Tim B., et al.
Publicado: (2016) -
New solvation free energy function comprising intermolecular solvation and intramolecular self-solvation terms
por: Choi, Hwanho, et al.
Publicado: (2013)