Cargando…
Acute Kidney Injury in Patients Hospitalized With COVID-19 in New York City: Temporal Trends From March 2020 to April 2021
Autores principales: | Dellepiane, Sergio, Vaid, Akhil, Jaladanki, Suraj K., Coca, Steven, Fayad, Zahi A., Charney, Alexander W., Bottinger, Erwin P., He, John Cijiang, Glicksberg, Benjamin S., Chan, Lili, Nadkarni, Girish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325375/ https://www.ncbi.nlm.nih.gov/pubmed/34368666 http://dx.doi.org/10.1016/j.xkme.2021.06.008 |
Ejemplares similares
-
Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City
por: Jaladanki, Suraj K, et al.
Publicado: (2021) -
Coronavirus 2019 and People Living With Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City
por: Sigel, Keith, et al.
Publicado: (2020) -
Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19
por: Vaid, Akhil, et al.
Publicado: (2020) -
Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
por: Vaid, Akhil, et al.
Publicado: (2021) -
Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: A retrospective cohort study
por: Paranjpe, Ishan, et al.
Publicado: (2021)