Cargando…
Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images
The current COVID-19 pandemic, that has caused more than 100 million cases as well as more than two million deaths worldwide, demands the development of fast and accurate diagnostic methods despite the lack of available samples. This disease mainly affects the respiratory system of the patients and...
Autores principales: | Morís, Daniel Iglesias, de Moura Ramos, José Joaquim, Buján, Jorge Novo, Hortas, Marcos Ortega |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325379/ https://www.ncbi.nlm.nih.gov/pubmed/34366577 http://dx.doi.org/10.1016/j.eswa.2021.115681 |
Ejemplares similares
-
Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images
por: de Moura, Joaquim, et al.
Publicado: (2022) -
Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
por: Vidal, Plácido L., et al.
Publicado: (2021) -
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
por: Álvarez-Rodríguez, Lorena, et al.
Publicado: (2022) -
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
por: Ravì, Daniele, et al.
Publicado: (2019) -
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Motamed, Saman, et al.
Publicado: (2021)