Cargando…

Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2

We investigated compounds selected by molecular docking to identify a specific treatment for COVID-19 that decreases the interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD) of SARS-CoV-2. Five compounds that interact with ACE2 amino acids Gln24, Asp30, Hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Benítez-Cardoza, Claudia Guadalupe, Vique-Sánchez, José Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325380/
https://www.ncbi.nlm.nih.gov/pubmed/34358993
http://dx.doi.org/10.1016/j.compbiomed.2021.104719
Descripción
Sumario:We investigated compounds selected by molecular docking to identify a specific treatment for COVID-19 that decreases the interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD) of SARS-CoV-2. Five compounds that interact with ACE2 amino acids Gln24, Asp30, His34, Tyr41, Gln42, Met82, Lys353, and Arg357 were evaluated using specific binding assays for their effects on the interaction between ACE2 with RBD. The compound labeled ED demonstrated favorable ACE2-binding, with an IC(50) of 31.95 μM. ED cytotoxicity, evaluated using PC3 cells in an MTT assay, was consistent with the low theoretical toxicity previously reported. We propose that ED mainly interacts with His34, Glu37, and Lys353 in ACE2 and that it has an inhibitory effect on the interaction of ACE2 with the RBD of the S-protein. We recommend further investigation to develop ED into a potential drug or adjuvant in COVID-19 treatment.