Cargando…
Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa
AIM: HIV prevention measures in sub-Saharan Africa are still short of attaining the UNAIDS 90–90-90 fast track targets set in 2014. Identifying predictors for HIV status may facilitate targeted screening interventions that improve health care. We aimed at identifying HIV predictors as well as predic...
Autores principales: | Mutai, Charles K., McSharry, Patrick E., Ngaruye, Innocent, Musabanganji, Edouard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325403/ https://www.ncbi.nlm.nih.gov/pubmed/34332540 http://dx.doi.org/10.1186/s12874-021-01346-2 |
Ejemplares similares
-
Use of unsupervised machine learning to characterise HIV predictors in sub-Saharan Africa
por: Mutai, Charles K., et al.
Publicado: (2023) -
Women and HIV in Sub-Saharan Africa
por: Ramjee, Gita, et al.
Publicado: (2013) -
Peanuts, Aflatoxins and Undernutrition in Children in Sub-Saharan Africa
por: Mupunga, Innocent, et al.
Publicado: (2017) -
The Challenge of HIV/AIDS in Sub-Saharan Africa
por: Gilks, Charles F
Publicado: (1999) -
Identifying Key Drivers of the Impact of an HIV Cure Intervention in Sub-Saharan Africa
por: Phillips, Andrew N., et al.
Publicado: (2016)