Cargando…

Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area

Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply and develop systematic methods to interpret the true SARS-CoV-2 signal from noise intro...

Descripción completa

Detalles Bibliográficos
Autores principales: Greenwald, Hannah D., Kennedy, Lauren C., Hinkle, Adrian, Whitney, Oscar N., Fan, Vinson B., Crits-Christoph, Alexander, Harris-Lovett, Sasha, Flamholz, Avi I., Al-Shayeb, Basem, Liao, Lauren D., Beyers, Matt, Brown, Daniel, Chakrabarti, Alicia R., Dow, Jason, Frost, Dan, Koekemoer, Mark, Lynch, Chris, Sarkar, Payal, White, Eileen, Kantor, Rose, Nelson, Kara L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325558/
https://www.ncbi.nlm.nih.gov/pubmed/34373850
http://dx.doi.org/10.1016/j.wroa.2021.100111
_version_ 1783731583324258304
author Greenwald, Hannah D.
Kennedy, Lauren C.
Hinkle, Adrian
Whitney, Oscar N.
Fan, Vinson B.
Crits-Christoph, Alexander
Harris-Lovett, Sasha
Flamholz, Avi I.
Al-Shayeb, Basem
Liao, Lauren D.
Beyers, Matt
Brown, Daniel
Chakrabarti, Alicia R.
Dow, Jason
Frost, Dan
Koekemoer, Mark
Lynch, Chris
Sarkar, Payal
White, Eileen
Kantor, Rose
Nelson, Kara L.
author_facet Greenwald, Hannah D.
Kennedy, Lauren C.
Hinkle, Adrian
Whitney, Oscar N.
Fan, Vinson B.
Crits-Christoph, Alexander
Harris-Lovett, Sasha
Flamholz, Avi I.
Al-Shayeb, Basem
Liao, Lauren D.
Beyers, Matt
Brown, Daniel
Chakrabarti, Alicia R.
Dow, Jason
Frost, Dan
Koekemoer, Mark
Lynch, Chris
Sarkar, Payal
White, Eileen
Kantor, Rose
Nelson, Kara L.
author_sort Greenwald, Hannah D.
collection PubMed
description Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data (Kendall's Tau-b (τ)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make wastewater signal more interpretable and comparable across studies.
format Online
Article
Text
id pubmed-8325558
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83255582021-08-02 Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area Greenwald, Hannah D. Kennedy, Lauren C. Hinkle, Adrian Whitney, Oscar N. Fan, Vinson B. Crits-Christoph, Alexander Harris-Lovett, Sasha Flamholz, Avi I. Al-Shayeb, Basem Liao, Lauren D. Beyers, Matt Brown, Daniel Chakrabarti, Alicia R. Dow, Jason Frost, Dan Koekemoer, Mark Lynch, Chris Sarkar, Payal White, Eileen Kantor, Rose Nelson, Kara L. Water Res X Review Article Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data (Kendall's Tau-b (τ)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make wastewater signal more interpretable and comparable across studies. Elsevier 2021-07-31 /pmc/articles/PMC8325558/ /pubmed/34373850 http://dx.doi.org/10.1016/j.wroa.2021.100111 Text en © 2021 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review Article
Greenwald, Hannah D.
Kennedy, Lauren C.
Hinkle, Adrian
Whitney, Oscar N.
Fan, Vinson B.
Crits-Christoph, Alexander
Harris-Lovett, Sasha
Flamholz, Avi I.
Al-Shayeb, Basem
Liao, Lauren D.
Beyers, Matt
Brown, Daniel
Chakrabarti, Alicia R.
Dow, Jason
Frost, Dan
Koekemoer, Mark
Lynch, Chris
Sarkar, Payal
White, Eileen
Kantor, Rose
Nelson, Kara L.
Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title_full Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title_fullStr Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title_full_unstemmed Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title_short Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area
title_sort tools for interpretation of wastewater sars-cov-2 temporal and spatial trends demonstrated with data collected in the san francisco bay area
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325558/
https://www.ncbi.nlm.nih.gov/pubmed/34373850
http://dx.doi.org/10.1016/j.wroa.2021.100111
work_keys_str_mv AT greenwaldhannahd toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT kennedylaurenc toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT hinkleadrian toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT whitneyoscarn toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT fanvinsonb toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT critschristophalexander toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT harrislovettsasha toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT flamholzavii toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT alshayebbasem toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT liaolaurend toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT beyersmatt toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT browndaniel toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT chakrabartialiciar toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT dowjason toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT frostdan toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT koekemoermark toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT lynchchris toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT sarkarpayal toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT whiteeileen toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT kantorrose toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea
AT nelsonkaral toolsforinterpretationofwastewatersarscov2temporalandspatialtrendsdemonstratedwithdatacollectedinthesanfranciscobayarea