Cargando…

Luteolin suppresses 5-hydroxytryptamine elevation in stimulated RBL-2H3 cells and experimental colitis mice

Increased 5-hydroxytryptamine may be associated with the development and progression of inflammatory bowel disease. In this study, we examined the suppressive effect of flavonoids on the increased intra- and extracellular 5-hydroxytryptamine levels in rat mast RBL-2H3 cells, known to produce 5-hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Suga, Naoko, Murakami, Akira, Arimitsu, Hideyuki, Nakamura, Toshiyuki, Nakamura, Yoshimasa, Kato, Yoji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325766/
https://www.ncbi.nlm.nih.gov/pubmed/34376910
http://dx.doi.org/10.3164/jcbn.20-192
Descripción
Sumario:Increased 5-hydroxytryptamine may be associated with the development and progression of inflammatory bowel disease. In this study, we examined the suppressive effect of flavonoids on the increased intra- and extracellular 5-hydroxytryptamine levels in rat mast RBL-2H3 cells, known to produce 5-hydroxytryptamine by the phorbol 12-myristate 13-acetate stimulation. Among the flavonoids examined, luteolin and quercetin significantly reduced the cellular 5-hydroxytryptamine concentration. Gene and protein expression analyses revealed that luteolin significantly suppressed cellular tryptophan hydroxylase 1 expression induced by phorbol 12-myristate 13-acetate stimulation. Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling was also suppressed by luteolin, suggesting that this pathway is one of targets of 5-hydroxytryptamine modulation by luteolin. An in vivo experimental colitis model was prepared by administering 2.5% dextran sodium sulfate in drinking water to C57BL/6 mice for seven days. The ingestion of 0.1% dietary luteolin suppressed the increasing 5-hydroxytryptamine in the colorectal mucosa. In conclusion, luteolin possesses a suppressive effect on extensive 5-hydroxytryptamine formation in both experimental RBL-2H3 cells and colitis models.