Cargando…
Fusion neural networks for plant classification: learning to combine RGB, hyperspectral, and lidar data
Airborne remote sensing offers unprecedented opportunities to efficiently monitor vegetation, but methods to delineate and classify individual plant species using the collected data are still actively being developed and improved. The Integrating Data science with Trees and Remote Sensing (IDTReeS)...
Autores principales: | Scholl, Victoria M., McGlinchy, Joseph, Price-Broncucia, Teo, Balch, Jennifer K., Joseph, Maxwell B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325917/ https://www.ncbi.nlm.nih.gov/pubmed/34395073 http://dx.doi.org/10.7717/peerj.11790 |
Ejemplares similares
-
Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data
por: Dalponte, Michele, et al.
Publicado: (2019) -
Predicting subsurface sonar observations with satellite-derived ocean surface data in the California Current Ecosystem
por: Gadeken, Kellie R., et al.
Publicado: (2021) -
Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network
por: Chang, Zhanyuan, et al.
Publicado: (2020) -
Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data
por: Wang, Lei, et al.
Publicado: (2022) -
Feasibility Study on the Classification of Persimmon Trees’ Components Based on Hyperspectral LiDAR
por: Shao, Hui, et al.
Publicado: (2023)