Cargando…
Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes
A wide range of products are produced in the chemical producing industry such as textile dyes, chemicals, printing dyes and chemicals, paper chemicals, electrostatic powder dyes, and optical brighteners. The aim of this study is to investigate the treatability of chemical oxygen demand (COD), aromat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326475/ https://www.ncbi.nlm.nih.gov/pubmed/34385851 http://dx.doi.org/10.3906/kim-2010-48 |
_version_ | 1783731830813360128 |
---|---|
author | GÜNEŞ, Elçin ÇİFÇİ, Deniz İzlen DİNÇER, Ali Rıza GÜNEŞ, Yalçın |
author_facet | GÜNEŞ, Elçin ÇİFÇİ, Deniz İzlen DİNÇER, Ali Rıza GÜNEŞ, Yalçın |
author_sort | GÜNEŞ, Elçin |
collection | PubMed |
description | A wide range of products are produced in the chemical producing industry such as textile dyes, chemicals, printing dyes and chemicals, paper chemicals, electrostatic powder dyes, and optical brighteners. The aim of this study is to investigate the treatability of chemical oxygen demand (COD), aromaticity, and color in the wastewater of this sector, where highly complex chemicals are used. Most of the studies in the literature are related to the treatment of synthetically prepared dyed wastewater. This study is important as it is carried out with real wastewater and gives results of many treatment methods. In the study, COD, UV-vis absorbance, and color values were attempted to be removed from the wastewater of a chemical producing industry that was pretreated by coagulation-flocculation. The COD value of the pretreated wastewater discharged to the central treatment system was restricted as 1000 mg/L. Pretreated wastewater characterization is as follows: COD: 2117 mg/L, UV-vis absorbance values at; 254 nm: 9.91, 280 nm: 8.65, 341 nm: 12.77, 436 nm: 5.01, 525 nm: 2.24, and 620 nm: 1.59. In the study, adsorption, ozonation, and advanced oxidation processes (Fenton and persulfate oxidation) were used to remove COD and UV-vis absorbance values (aromaticity, organics, and color). The method by which the best removal efficiency was obtained for all parameters was the adsorption process using powdered activated carbon (PAC). The equilibrium PAC dose was found as 6 g/L. At this adsorbent dose, the removal efficiencies of UV-vis absorbance values were all around 99% and the efficiency of COD removal was 77%. The Langmuir isotherm constants were found to be q(max)= 30.4 mg/g and K(L )= 487.9 (L/mg). The COD concentration at this adsorbent dose was 486 mg/L and wastewater was suitable for discharge to the central wastewater treatment plant in that region. |
format | Online Article Text |
id | pubmed-8326475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Scientific and Technological Research Council of Turkey |
record_format | MEDLINE/PubMed |
spelling | pubmed-83264752021-08-11 Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes GÜNEŞ, Elçin ÇİFÇİ, Deniz İzlen DİNÇER, Ali Rıza GÜNEŞ, Yalçın Turk J Chem Article A wide range of products are produced in the chemical producing industry such as textile dyes, chemicals, printing dyes and chemicals, paper chemicals, electrostatic powder dyes, and optical brighteners. The aim of this study is to investigate the treatability of chemical oxygen demand (COD), aromaticity, and color in the wastewater of this sector, where highly complex chemicals are used. Most of the studies in the literature are related to the treatment of synthetically prepared dyed wastewater. This study is important as it is carried out with real wastewater and gives results of many treatment methods. In the study, COD, UV-vis absorbance, and color values were attempted to be removed from the wastewater of a chemical producing industry that was pretreated by coagulation-flocculation. The COD value of the pretreated wastewater discharged to the central treatment system was restricted as 1000 mg/L. Pretreated wastewater characterization is as follows: COD: 2117 mg/L, UV-vis absorbance values at; 254 nm: 9.91, 280 nm: 8.65, 341 nm: 12.77, 436 nm: 5.01, 525 nm: 2.24, and 620 nm: 1.59. In the study, adsorption, ozonation, and advanced oxidation processes (Fenton and persulfate oxidation) were used to remove COD and UV-vis absorbance values (aromaticity, organics, and color). The method by which the best removal efficiency was obtained for all parameters was the adsorption process using powdered activated carbon (PAC). The equilibrium PAC dose was found as 6 g/L. At this adsorbent dose, the removal efficiencies of UV-vis absorbance values were all around 99% and the efficiency of COD removal was 77%. The Langmuir isotherm constants were found to be q(max)= 30.4 mg/g and K(L )= 487.9 (L/mg). The COD concentration at this adsorbent dose was 486 mg/L and wastewater was suitable for discharge to the central wastewater treatment plant in that region. The Scientific and Technological Research Council of Turkey 2021-06-30 /pmc/articles/PMC8326475/ /pubmed/34385851 http://dx.doi.org/10.3906/kim-2010-48 Text en Copyright © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Article GÜNEŞ, Elçin ÇİFÇİ, Deniz İzlen DİNÇER, Ali Rıza GÜNEŞ, Yalçın Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title | Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title_full | Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title_fullStr | Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title_full_unstemmed | Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title_short | Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
title_sort | removal of cod, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326475/ https://www.ncbi.nlm.nih.gov/pubmed/34385851 http://dx.doi.org/10.3906/kim-2010-48 |
work_keys_str_mv | AT guneselcin removalofcodaromaticityandcolorofapretreatedchemicalproducingindustrialwastewateracomparisonbetweenadsorptionozonationandadvancedoxidationprocesses AT cifcidenizizlen removalofcodaromaticityandcolorofapretreatedchemicalproducingindustrialwastewateracomparisonbetweenadsorptionozonationandadvancedoxidationprocesses AT dinceralirıza removalofcodaromaticityandcolorofapretreatedchemicalproducingindustrialwastewateracomparisonbetweenadsorptionozonationandadvancedoxidationprocesses AT gunesyalcın removalofcodaromaticityandcolorofapretreatedchemicalproducingindustrialwastewateracomparisonbetweenadsorptionozonationandadvancedoxidationprocesses |