Cargando…
The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L.
Heavy metals, due to their inability to degrade, pose a serious environmental and nutritional problem. The accumulation of essential and non-essential heavy metals in living organisms reduces normal growth and development, resulting in acute poisoning, disease and even death of organisms. Melatonin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326487/ https://www.ncbi.nlm.nih.gov/pubmed/34385864 http://dx.doi.org/10.3906/kim-2012-7 |
_version_ | 1783731834804240384 |
---|---|
author | HODŽIĆ, Elvisa GALIJAŠEVIĆ, Semira BALABAN, Milica REKANOVIĆ, Sebila MAKIĆ, Halid KUKAVICA, Biljana MIHAJLOVIĆ, Dijana |
author_facet | HODŽIĆ, Elvisa GALIJAŠEVIĆ, Semira BALABAN, Milica REKANOVIĆ, Sebila MAKIĆ, Halid KUKAVICA, Biljana MIHAJLOVIĆ, Dijana |
author_sort | HODŽIĆ, Elvisa |
collection | PubMed |
description | Heavy metals, due to their inability to degrade, pose a serious environmental and nutritional problem. The accumulation of essential and non-essential heavy metals in living organisms reduces normal growth and development, resulting in acute poisoning, disease and even death of organisms. Melatonin is a very important multifunctional molecule in protecting plants from oxidative stress due to its ability to directly neutralize reactive oxygen species (ROS). Also, melatonin has a chelating property, which may contribute in reducing metal-induced toxicity. In this paper, the protective role of melatonin in counteracting metal-induced free radical generation was highlighted. Using the HPLC-FLD technique melatonin was identified and quantified in the roots and leaves of lemon balm ( Melissa officinalis L.), grown under photoperiod conditions. Furthermore, the response of plants pre-treated with exogenous 0.1 mM melatonin to the increased zinc (Zn) and cadmium (Cd) concentrations was observed, with changes in mineral (Ca, Mg), physiological and antioxidant status of the plant during heavy metals stress. The obtained melatonin concentrations were the highest published for dry plants so far. Elevated Cd and Zn levels in soil caused alternation in biochemical and physiological parameters of lemon balm leaves and roots. However, melatonin pre-treatment increased plant tolerance to heavy metals stress. Increased Cd and Zn uptake and their translocation into the leaves were also improved, indicating the possible use of melatonin in phytoremediation. |
format | Online Article Text |
id | pubmed-8326487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Scientific and Technological Research Council of Turkey |
record_format | MEDLINE/PubMed |
spelling | pubmed-83264872021-08-11 The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. HODŽIĆ, Elvisa GALIJAŠEVIĆ, Semira BALABAN, Milica REKANOVIĆ, Sebila MAKIĆ, Halid KUKAVICA, Biljana MIHAJLOVIĆ, Dijana Turk J Chem Article Heavy metals, due to their inability to degrade, pose a serious environmental and nutritional problem. The accumulation of essential and non-essential heavy metals in living organisms reduces normal growth and development, resulting in acute poisoning, disease and even death of organisms. Melatonin is a very important multifunctional molecule in protecting plants from oxidative stress due to its ability to directly neutralize reactive oxygen species (ROS). Also, melatonin has a chelating property, which may contribute in reducing metal-induced toxicity. In this paper, the protective role of melatonin in counteracting metal-induced free radical generation was highlighted. Using the HPLC-FLD technique melatonin was identified and quantified in the roots and leaves of lemon balm ( Melissa officinalis L.), grown under photoperiod conditions. Furthermore, the response of plants pre-treated with exogenous 0.1 mM melatonin to the increased zinc (Zn) and cadmium (Cd) concentrations was observed, with changes in mineral (Ca, Mg), physiological and antioxidant status of the plant during heavy metals stress. The obtained melatonin concentrations were the highest published for dry plants so far. Elevated Cd and Zn levels in soil caused alternation in biochemical and physiological parameters of lemon balm leaves and roots. However, melatonin pre-treatment increased plant tolerance to heavy metals stress. Increased Cd and Zn uptake and their translocation into the leaves were also improved, indicating the possible use of melatonin in phytoremediation. The Scientific and Technological Research Council of Turkey 2021-06-30 /pmc/articles/PMC8326487/ /pubmed/34385864 http://dx.doi.org/10.3906/kim-2012-7 Text en Copyright © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Article HODŽIĆ, Elvisa GALIJAŠEVIĆ, Semira BALABAN, Milica REKANOVIĆ, Sebila MAKIĆ, Halid KUKAVICA, Biljana MIHAJLOVIĆ, Dijana The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title | The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title_full | The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title_fullStr | The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title_full_unstemmed | The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title_short | The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. |
title_sort | protective role of melatonin under heavy metal-induced stress in melissa officinalis l. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326487/ https://www.ncbi.nlm.nih.gov/pubmed/34385864 http://dx.doi.org/10.3906/kim-2012-7 |
work_keys_str_mv | AT hodzicelvisa theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT galijasevicsemira theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT balabanmilica theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT rekanovicsebila theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT makichalid theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT kukavicabiljana theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT mihajlovicdijana theprotectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT hodzicelvisa protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT galijasevicsemira protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT balabanmilica protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT rekanovicsebila protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT makichalid protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT kukavicabiljana protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl AT mihajlovicdijana protectiveroleofmelatoninunderheavymetalinducedstressinmelissaofficinalisl |