Cargando…
Identification of key genes in allergic rhinitis by bioinformatics analysis
OBJECTIVE: This study aimed to explore the potential molecular mechanism of allergic rhinitis (AR) and identify gene signatures by analyzing microarray data using bioinformatics methods. METHODS: The dataset GSE19187 was used to screen differentially expressed genes (DEGs) between samples from patie...
Autores principales: | Zhang, Yunfei, Huang, Yue, Chen, Wen-xia, Xu, Zheng-min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326637/ https://www.ncbi.nlm.nih.gov/pubmed/34334005 http://dx.doi.org/10.1177/03000605211029521 |
Ejemplares similares
-
Bioinformatics analysis of mRNA profiles and identification of
microRNA-mRNA network in CD4(+) T cells in seasonal allergic
rhinitis
por: Jin, Peng, et al.
Publicado: (2022) -
Identification of key genes involved in the pathogenesis of cutaneous melanoma using bioinformatics analysis
por: Chen, Jianqin, et al.
Publicado: (2020) -
The top 100 most influential articles in allergic rhinitis from 1970 to 2018: A bibliometric analysis
por: Wu, Qingwu, et al.
Publicado: (2019) -
Bioinformatics analysis of key biomarkers for retinoblastoma
por: Zhao, Xin-mei, et al.
Publicado: (2021) -
Identification of hub genes in colon cancer via bioinformatics
analysis
por: Liu, Jun, et al.
Publicado: (2020)