Cargando…
Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase ch...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mayo Foundation for Medical Education and Research
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327278/ https://www.ncbi.nlm.nih.gov/pubmed/34353468 http://dx.doi.org/10.1016/j.mayocp.2021.05.027 |
_version_ | 1783732043548459008 |
---|---|
author | Attia, Zachi I. Kapa, Suraj Dugan, Jennifer Pereira, Naveen Noseworthy, Peter A. Jimenez, Francisco Lopez Cruz, Jessica Carter, Rickey E. DeSimone, Daniel C. Signorino, John Halamka, John Chennaiah Gari, Nikhita R. Madathala, Raja Sekhar Platonov, Pyotr G. Gul, Fahad Janssens, Stefan P. Narayan, Sanjiv Upadhyay, Gaurav A. Alenghat, Francis J. Lahiri, Marc K. Dujardin, Karl Hermel, Melody Dominic, Paari Turk-Adawi, Karam Asaad, Nidal Svensson, Anneli Fernandez-Aviles, Francisco Esakof, Darryl D. Bartunek, Jozef Noheria, Amit Sridhar, Arun R. Lanza, Gaetano A. Cohoon, Kevin Padmanabhan, Deepak Pardo Gutierrez, Jose Alberto Sinagra, Gianfranco Merlo, Marco Zagari, Domenico Rodriguez Escenaro, Brenda D. Pahlajani, Dev B. Loncar, Goran Vukomanovic, Vladan Jensen, Henrik K. Farkouh, Michael E. Luescher, Thomas F. Su Ping, Carolyn Lam Peters, Nicholas S. Friedman, Paul A. |
author_facet | Attia, Zachi I. Kapa, Suraj Dugan, Jennifer Pereira, Naveen Noseworthy, Peter A. Jimenez, Francisco Lopez Cruz, Jessica Carter, Rickey E. DeSimone, Daniel C. Signorino, John Halamka, John Chennaiah Gari, Nikhita R. Madathala, Raja Sekhar Platonov, Pyotr G. Gul, Fahad Janssens, Stefan P. Narayan, Sanjiv Upadhyay, Gaurav A. Alenghat, Francis J. Lahiri, Marc K. Dujardin, Karl Hermel, Melody Dominic, Paari Turk-Adawi, Karam Asaad, Nidal Svensson, Anneli Fernandez-Aviles, Francisco Esakof, Darryl D. Bartunek, Jozef Noheria, Amit Sridhar, Arun R. Lanza, Gaetano A. Cohoon, Kevin Padmanabhan, Deepak Pardo Gutierrez, Jose Alberto Sinagra, Gianfranco Merlo, Marco Zagari, Domenico Rodriguez Escenaro, Brenda D. Pahlajani, Dev B. Loncar, Goran Vukomanovic, Vladan Jensen, Henrik K. Farkouh, Michael E. Luescher, Thomas F. Su Ping, Carolyn Lam Peters, Nicholas S. Friedman, Paul A. |
author_sort | Attia, Zachi I. |
collection | PubMed |
description | OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction–confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. RESULTS: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. CONCLUSION: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence–enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. |
format | Online Article Text |
id | pubmed-8327278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Mayo Foundation for Medical Education and Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-83272782021-08-02 Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram Attia, Zachi I. Kapa, Suraj Dugan, Jennifer Pereira, Naveen Noseworthy, Peter A. Jimenez, Francisco Lopez Cruz, Jessica Carter, Rickey E. DeSimone, Daniel C. Signorino, John Halamka, John Chennaiah Gari, Nikhita R. Madathala, Raja Sekhar Platonov, Pyotr G. Gul, Fahad Janssens, Stefan P. Narayan, Sanjiv Upadhyay, Gaurav A. Alenghat, Francis J. Lahiri, Marc K. Dujardin, Karl Hermel, Melody Dominic, Paari Turk-Adawi, Karam Asaad, Nidal Svensson, Anneli Fernandez-Aviles, Francisco Esakof, Darryl D. Bartunek, Jozef Noheria, Amit Sridhar, Arun R. Lanza, Gaetano A. Cohoon, Kevin Padmanabhan, Deepak Pardo Gutierrez, Jose Alberto Sinagra, Gianfranco Merlo, Marco Zagari, Domenico Rodriguez Escenaro, Brenda D. Pahlajani, Dev B. Loncar, Goran Vukomanovic, Vladan Jensen, Henrik K. Farkouh, Michael E. Luescher, Thomas F. Su Ping, Carolyn Lam Peters, Nicholas S. Friedman, Paul A. Mayo Clin Proc Original Article OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction–confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. RESULTS: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. CONCLUSION: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence–enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. Mayo Foundation for Medical Education and Research 2021-08 2021-08-02 /pmc/articles/PMC8327278/ /pubmed/34353468 http://dx.doi.org/10.1016/j.mayocp.2021.05.027 Text en © 2021 Mayo Foundation for Medical Education and Research. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Original Article Attia, Zachi I. Kapa, Suraj Dugan, Jennifer Pereira, Naveen Noseworthy, Peter A. Jimenez, Francisco Lopez Cruz, Jessica Carter, Rickey E. DeSimone, Daniel C. Signorino, John Halamka, John Chennaiah Gari, Nikhita R. Madathala, Raja Sekhar Platonov, Pyotr G. Gul, Fahad Janssens, Stefan P. Narayan, Sanjiv Upadhyay, Gaurav A. Alenghat, Francis J. Lahiri, Marc K. Dujardin, Karl Hermel, Melody Dominic, Paari Turk-Adawi, Karam Asaad, Nidal Svensson, Anneli Fernandez-Aviles, Francisco Esakof, Darryl D. Bartunek, Jozef Noheria, Amit Sridhar, Arun R. Lanza, Gaetano A. Cohoon, Kevin Padmanabhan, Deepak Pardo Gutierrez, Jose Alberto Sinagra, Gianfranco Merlo, Marco Zagari, Domenico Rodriguez Escenaro, Brenda D. Pahlajani, Dev B. Loncar, Goran Vukomanovic, Vladan Jensen, Henrik K. Farkouh, Michael E. Luescher, Thomas F. Su Ping, Carolyn Lam Peters, Nicholas S. Friedman, Paul A. Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title | Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title_full | Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title_fullStr | Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title_full_unstemmed | Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title_short | Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram |
title_sort | rapid exclusion of covid infection with the artificial intelligence electrocardiogram |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327278/ https://www.ncbi.nlm.nih.gov/pubmed/34353468 http://dx.doi.org/10.1016/j.mayocp.2021.05.027 |
work_keys_str_mv | AT attiazachii rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT kapasuraj rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT duganjennifer rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT pereiranaveen rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT noseworthypetera rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT jimenezfranciscolopez rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT cruzjessica rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT carterrickeye rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT desimonedanielc rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT signorinojohn rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT halamkajohn rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT chennaiahgarinikhitar rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT madathalarajasekhar rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT platonovpyotrg rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT gulfahad rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT janssensstefanp rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT narayansanjiv rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT upadhyaygaurava rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT alenghatfrancisj rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT lahirimarck rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT dujardinkarl rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT hermelmelody rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT dominicpaari rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT turkadawikaram rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT asaadnidal rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT svenssonanneli rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT fernandezavilesfrancisco rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT esakofdarryld rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT bartunekjozef rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT noheriaamit rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT sridhararunr rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT lanzagaetanoa rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT cohoonkevin rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT padmanabhandeepak rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT pardogutierrezjosealberto rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT sinagragianfranco rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT merlomarco rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT zagaridomenico rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT rodriguezescenarobrendad rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT pahlajanidevb rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT loncargoran rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT vukomanovicvladan rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT jensenhenrikk rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT farkouhmichaele rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT luescherthomasf rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT supingcarolynlam rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT petersnicholass rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT friedmanpaula rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram AT rapidexclusionofcovidinfectionwiththeartificialintelligenceelectrocardiogram |