Cargando…
Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review
OBJECTIVE: Alzheimer disease (AD) is the most common cause of dementia, a syndrome characterized by cognitive impairment severe enough to interfere with activities of daily life. We aimed to conduct a systematic literature review (SLR) of studies that applied machine learning (ML) methods to clinica...
Autores principales: | Kumar, Sayantan, Oh, Inez, Schindler, Suzanne, Lai, Albert M, Payne, Philip R O, Gupta, Aditi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327375/ https://www.ncbi.nlm.nih.gov/pubmed/34350389 http://dx.doi.org/10.1093/jamiaopen/ooab052 |
Ejemplares similares
-
Extraction of clinical phenotypes for Alzheimer’s disease dementia from clinical notes using natural language processing
por: Oh, Inez Y, et al.
Publicado: (2023) -
Association Between Socioeconomic Factors, Race, and Use of a Specialty Memory Clinic
por: Lewis, Abigail, et al.
Publicado: (2023) -
Analyse patient-level heterogeneity in Alzheimer’s Disease using multimodal normative modelling
por: Kumar, Sayantan, et al.
Publicado: (2023) -
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease
por: Kim, Jun Pyo, et al.
Publicado: (2019) -
Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review
por: Grueso, Sergio, et al.
Publicado: (2021)