Cargando…
FIBER: enabling flexible retrieval of electronic health records data for clinical predictive modeling
OBJECTIVES: The development of clinical predictive models hinges upon the availability of comprehensive clinical data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engineers. Specifically, these efforts are focused on data extraction and preprocessin...
Autores principales: | Datta, Suparno, Sachs, Jan Philipp, FreitasDa Cruz, Harry, Martensen, Tom, Bode, Philipp, Morassi Sasso, Ariane, Glicksberg, Benjamin S, Böttinger, Erwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327378/ https://www.ncbi.nlm.nih.gov/pubmed/34350388 http://dx.doi.org/10.1093/jamiaopen/ooab048 |
Ejemplares similares
-
Predicting hypertension onset from longitudinal electronic health records with deep learning
por: Datta, Suparno, et al.
Publicado: (2022) -
Test collections for electronic health record-based clinical information retrieval
por: Wang, Yanshan, et al.
Publicado: (2019) -
ROMOP: a light-weight R package for interfacing with OMOP-formatted electronic health record data
por: Glicksberg, Benjamin S, et al.
Publicado: (2019) -
Evaluation of patient-level retrieval from electronic health record data for a cohort discovery task
por: Chamberlin, Steven R, et al.
Publicado: (2020) -
Development and validation of techniques for phenotyping ST-elevation myocardial infarction encounters from electronic health records
por: Somani, Sulaiman, et al.
Publicado: (2021)