Cargando…
Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking
Eye-tracking can help decode the intricate control mechanism in human performance. In healthcare, physicians-in-training require extensive practice to improve their healthcare skills. When a trainee encounters any difficulty in the practice, they will need feedback from experts to improve their perf...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bern Open Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327395/ https://www.ncbi.nlm.nih.gov/pubmed/34345375 http://dx.doi.org/10.16910/jemr.14.2.5 |
_version_ | 1783732065714307072 |
---|---|
author | Xin, Liu Bin, Zheng Xiaoqin, Duan Wenjing, He Yuandong, Li Jinyu, Zhao Chen, Zhao Lin, Wang |
author_facet | Xin, Liu Bin, Zheng Xiaoqin, Duan Wenjing, He Yuandong, Li Jinyu, Zhao Chen, Zhao Lin, Wang |
author_sort | Xin, Liu |
collection | PubMed |
description | Eye-tracking can help decode the intricate control mechanism in human performance. In healthcare, physicians-in-training require extensive practice to improve their healthcare skills. When a trainee encounters any difficulty in the practice, they will need feedback from experts to improve their performance. Personal feedback is time-consuming and subjected to bias. In this study, we tracked the eye movements of trainees during their colonoscopic performance in simulation. We examined changes in eye movement behavior during the moments of navigation loss (MNL), a signature sign for task difficulty during colonoscopy, and tested whether deep learning algorithms can detect the MNL by feeding data from eye-tracking. Human eye gaze and pupil characteristics were learned and verified by the deep convolutional generative adversarial networks (DCGANs); the generated data were fed to the Long Short-Term Memory (LSTM) networks with three different data feeding strategies to classify MNLs from the entire colonoscopic procedure. Outputs from deep learning were compared to the expert’s judgment on the MNLs based on colonoscopic videos. The best classification outcome was achieved when we fed human eye data with 1000 synthesized eye data, where accuracy (91.80%), sensitivity (90.91%), and specificity (94.12%) were optimized. This study built an important foundation for our work of developing an education system for training healthcare skills using simulation. |
format | Online Article Text |
id | pubmed-8327395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Bern Open Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-83273952021-08-02 Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking Xin, Liu Bin, Zheng Xiaoqin, Duan Wenjing, He Yuandong, Li Jinyu, Zhao Chen, Zhao Lin, Wang J Eye Mov Res Research Article Eye-tracking can help decode the intricate control mechanism in human performance. In healthcare, physicians-in-training require extensive practice to improve their healthcare skills. When a trainee encounters any difficulty in the practice, they will need feedback from experts to improve their performance. Personal feedback is time-consuming and subjected to bias. In this study, we tracked the eye movements of trainees during their colonoscopic performance in simulation. We examined changes in eye movement behavior during the moments of navigation loss (MNL), a signature sign for task difficulty during colonoscopy, and tested whether deep learning algorithms can detect the MNL by feeding data from eye-tracking. Human eye gaze and pupil characteristics were learned and verified by the deep convolutional generative adversarial networks (DCGANs); the generated data were fed to the Long Short-Term Memory (LSTM) networks with three different data feeding strategies to classify MNLs from the entire colonoscopic procedure. Outputs from deep learning were compared to the expert’s judgment on the MNLs based on colonoscopic videos. The best classification outcome was achieved when we fed human eye data with 1000 synthesized eye data, where accuracy (91.80%), sensitivity (90.91%), and specificity (94.12%) were optimized. This study built an important foundation for our work of developing an education system for training healthcare skills using simulation. Bern Open Publishing 2021-07-13 /pmc/articles/PMC8327395/ /pubmed/34345375 http://dx.doi.org/10.16910/jemr.14.2.5 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License, ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Article Xin, Liu Bin, Zheng Xiaoqin, Duan Wenjing, He Yuandong, Li Jinyu, Zhao Chen, Zhao Lin, Wang Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title | Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title_full | Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title_fullStr | Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title_full_unstemmed | Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title_short | Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking |
title_sort | detecting task difficulty of learners in colonoscopy: evidence from eye-tracking |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327395/ https://www.ncbi.nlm.nih.gov/pubmed/34345375 http://dx.doi.org/10.16910/jemr.14.2.5 |
work_keys_str_mv | AT xinliu detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT binzheng detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT xiaoqinduan detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT wenjinghe detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT yuandongli detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT jinyuzhao detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT chenzhao detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking AT linwang detectingtaskdifficultyoflearnersincolonoscopyevidencefromeyetracking |