Cargando…
A Deep Unsupervised Learning Model for Artifact Correction of Pelvis Cone-Beam CT
PURPOSE: In recent years, cone-beam computed tomography (CBCT) is increasingly used in adaptive radiation therapy (ART). However, compared with planning computed tomography (PCT), CBCT image has much more noise and imaging artifacts. Therefore, it is necessary to improve the image quality and HU acc...
Autores principales: | Dong, Guoya, Zhang, Chenglong, Liang, Xiaokun, Deng, Lei, Zhu, Yulin, Zhu, Xuanyu, Zhou, Xuanru, Song, Liming, Zhao, Xiang, Xie, Yaoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327750/ https://www.ncbi.nlm.nih.gov/pubmed/34350115 http://dx.doi.org/10.3389/fonc.2021.686875 |
Ejemplares similares
-
Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT
por: Li, Na, et al.
Publicado: (2023) -
An energy minimization method for the correction of cupping artifacts in cone‐beam CT
por: Xie, Shipeng, et al.
Publicado: (2016) -
Comparison of Supervised and Unsupervised Approaches for the Generation of Synthetic CT from Cone-Beam CT
por: Rossi, Matteo, et al.
Publicado: (2021) -
A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2022) -
Analysis of Cone-Beam Artifacts in off-Centered Circular CT for Four Reconstruction Methods
por: Valton, S., et al.
Publicado: (2006)