Cargando…
Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma
Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas open...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327881/ https://www.ncbi.nlm.nih.gov/pubmed/34210658 http://dx.doi.org/10.1101/mcs.a006064 |
_version_ | 1783732187967782912 |
---|---|
author | Liu, Tingting Merguerian, Matthew D. Rowe, Steven P. Pratilas, Christine A. Chen, Allen R. Ladle, Brian H. |
author_facet | Liu, Tingting Merguerian, Matthew D. Rowe, Steven P. Pratilas, Christine A. Chen, Allen R. Ladle, Brian H. |
author_sort | Liu, Tingting |
collection | PubMed |
description | Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small-cell lung cancer and anaplastic large cell lymphoma in which wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first-generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 mo of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1 and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance. |
format | Online Article Text |
id | pubmed-8327881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-83278812021-08-19 Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma Liu, Tingting Merguerian, Matthew D. Rowe, Steven P. Pratilas, Christine A. Chen, Allen R. Ladle, Brian H. Cold Spring Harb Mol Case Stud Research Report Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small-cell lung cancer and anaplastic large cell lymphoma in which wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first-generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 mo of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1 and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance. Cold Spring Harbor Laboratory Press 2021-08 /pmc/articles/PMC8327881/ /pubmed/34210658 http://dx.doi.org/10.1101/mcs.a006064 Text en © 2021 Liu et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits reuse and redistribution, except for commercial purposes, provided that the original author and source are credited. |
spellingShingle | Research Report Liu, Tingting Merguerian, Matthew D. Rowe, Steven P. Pratilas, Christine A. Chen, Allen R. Ladle, Brian H. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title | Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title_full | Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title_fullStr | Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title_full_unstemmed | Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title_short | Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma |
title_sort | exceptional response to the alk and ros1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed alk f1174l-mutated neuroblastoma |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327881/ https://www.ncbi.nlm.nih.gov/pubmed/34210658 http://dx.doi.org/10.1101/mcs.a006064 |
work_keys_str_mv | AT liutingting exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma AT merguerianmatthewd exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma AT rowestevenp exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma AT pratilaschristinea exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma AT chenallenr exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma AT ladlebrianh exceptionalresponsetothealkandros1inhibitorlorlatinibandsubsequentmechanismofresistanceinrelapsedalkf1174lmutatedneuroblastoma |