Cargando…
Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle
The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328058/ https://www.ncbi.nlm.nih.gov/pubmed/34341791 http://dx.doi.org/10.1101/2021.07.27.453834 |
Sumario: | The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In recent years nanoparticles have been shown to interact with peptides, ranging in size from single amino acids up to proteins. These nanoparticles can be tailor-made with specific functions and properties including bioavailability. To the best of our knowledge, in this study we show for the first time that a tailored titanium oxide nanoparticle interacts specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein. This can be developed potentially into a tool for selective control of viral protein functions. |
---|