Cargando…
Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City
Federated learning is a technique for training predictive models without sharing patient-level data, thus maintaining data security while allowing inter-institutional collaboration. We used federated learning to predict acute kidney injury within three and seven days of admission, using demographics...
Autores principales: | Jaladanki, Suraj K, Vaid, Akhil, Sawant, Ashwin S, Xu, Jie, Shah, Kush, Dellepiane, Sergio, Paranjpe, Ishan, Chan, Lili, Kovatch, Patricia, Charney, Alexander W, Wang, Fei, Glicksberg, Benjamin S, Singh, Karandeep, Nadkarni, Girish N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328073/ https://www.ncbi.nlm.nih.gov/pubmed/34341802 http://dx.doi.org/10.1101/2021.07.25.21261105 |
Ejemplares similares
-
Acute Kidney Injury in Patients Hospitalized With COVID-19 in New York City: Temporal Trends From March 2020 to April 2021
por: Dellepiane, Sergio, et al.
Publicado: (2021) -
Non-invasive ventilation versus mechanical ventilation in hypoxemic patients with COVID-19
por: Forrest, Iain S., et al.
Publicado: (2021) -
Autoencoders for sample size estimation for fully connected neural network classifiers
por: Gulamali, Faris F., et al.
Publicado: (2022) -
Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19
por: Vaid, Akhil, et al.
Publicado: (2020) -
Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
por: Vaid, Akhil, et al.
Publicado: (2021)