Cargando…

Endogenous Oscillations Time-Constrain Linguistic Segmentation: Cycling the Garden Path

Speech is transient. To comprehend entire sentences, segments consisting of multiple words need to be memorized for at least a while. However, it has been noted previously that we struggle to memorize segments longer than approximately 2.7 s. We hypothesized that electrophysiological processing cycl...

Descripción completa

Detalles Bibliográficos
Autores principales: Henke, Lena, Meyer, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328215/
https://www.ncbi.nlm.nih.gov/pubmed/33949654
http://dx.doi.org/10.1093/cercor/bhab086
Descripción
Sumario:Speech is transient. To comprehend entire sentences, segments consisting of multiple words need to be memorized for at least a while. However, it has been noted previously that we struggle to memorize segments longer than approximately 2.7 s. We hypothesized that electrophysiological processing cycles within the delta band (<4 Hz) underlie this time constraint. Participants’ EEG was recorded while they listened to temporarily ambiguous sentences. By manipulating the speech rate, we aimed at biasing participants’ interpretation: At a slow rate, segmentation after 2.7 s would trigger a correct interpretation. In contrast, at a fast rate, segmentation after 2.7 s would trigger a wrong interpretation and thus an error later in the sentence. In line with the suggested time constraint, the phase of the delta-band oscillation at the critical point in the sentence mirrored segmentation on the level of single trials, as indicated by the amplitude of the P600 event-related brain potential (ERP) later in the sentence. The correlation between upstream delta-band phase and downstream P600 amplitude implies that segmentation took place when an underlying neural oscillator had reached a specific angle within its cycle, determining comprehension. We conclude that delta-band oscillations set an endogenous time constraint on segmentation.