Cargando…
A comparative pharmacokinetic study of a novel sustained release danofloxacin formulation and the conventional product in rabbits
Sustained release drug formulations are frequently developed to reduce dosage frequency and to improve outcomes of drug therapy. This study evaluates the pharmacokinetic (PK) parameters of a novel injectable danofloxacin (DANO) formulation in comparison with a conventional product in an animal model...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Urmia University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328252/ https://www.ncbi.nlm.nih.gov/pubmed/34345395 http://dx.doi.org/10.30466/vrf.2019.105313.2504 |
Sumario: | Sustained release drug formulations are frequently developed to reduce dosage frequency and to improve outcomes of drug therapy. This study evaluates the pharmacokinetic (PK) parameters of a novel injectable danofloxacin (DANO) formulation in comparison with a conventional product in an animal model. A recently synthesized DANO formulation, prepared by incorporation of DANO-loaded mesoporous silica nanoparticles in liposomes and integration of liposomes in chitosan and β-glycerophosphate solution (lipogel) along with the conventional DANO product were injected subcutaneously (SC) in rabbits. Blood samples were collected at specific time points and DANO concentrations in plasma samples were measured. The PK parameters including maximum concentration (Cmax), time to reach Cmax (Tmax), area under the concentration versus time curves (AUC), area under the first moment concentration-time curve (AUMC) and mean residence time (MRT) were studied by non-compartmental analyses. The values of MRT (156.00 ± 20.00 hr), AUC (15.30 ± 3.00 µg mL(-1 )per hr) and Tmax (4.70 ± 1.60 hr) for lipogel formulation were higher than those of the conventional product (8.50 ± 3.60 hr, 3.70 ± 2.00 µg mL(-1) per hr and 0.80 ± 0.26 hr, respectively). However, Cmax values for lipogel formulation (0.41 ± 0.15 µg mL(-1)) were significantly lower than those of the conventional drug product (0.68 ± 0.09 µg mL(-1)). It was concluded that the novel DANO lipogel effectively slowed down the drug absorption and the incorporation of liposomes in hydrogel could be a useful approach to maintain the therapeutic drug level for a longer period; however, more studies are needed in this field. |
---|