Cargando…
PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional dat...
Autores principales: | Crowley, George, Kim, James, Kwon, Sophia, Lam, Rachel, Prezant, David J., Liu, Mengling, Nolan, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328304/ https://www.ncbi.nlm.nih.gov/pubmed/34288906 http://dx.doi.org/10.1371/journal.pcbi.1009144 |
Ejemplares similares
-
2372: Metabolite and biomarker predictors of WTC-lung injury: An integrated multiplatform pilot analysis
por: Crowley, George, et al.
Publicado: (2018) -
Synergistic Effect of WTC-Particulate Matter and Lysophosphatidic Acid Exposure and the Role of RAGE: In-Vitro and Translational Assessment
por: Lam, Rachel, et al.
Publicado: (2020) -
Dietary phenotype and advanced glycation end-products predict WTC-obstructive airways disease: a longitudinal observational study
por: Lam, Rachel, et al.
Publicado: (2021) -
Enlarged pulmonary artery is predicted by vascular injury biomarkers and is associated with WTC-Lung Injury in exposed fire fighters: a case–control study
por: Schenck, Edward J, et al.
Publicado: (2014) -
Metabolic Syndrome Biomarkers of World Trade Center Airway Hyperreactivity: A 16-Year Prospective Cohort Study
por: Kwon, Sophia, et al.
Publicado: (2019)