Cargando…
Machine Learning Algorithms are Superior to Conventional Regression Models in Predicting Risk Stratification of COVID-19 Patients
BACKGROUND: It is very important to determine the risk of patients developing severe or critical COVID-19, but most of the existing risk prediction models are established using conventional regression models. We aim to use machine learning algorithms to develop predictive models and compare predicti...
Autores principales: | Ye, Jiru, Hua, Meng, Zhu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328384/ https://www.ncbi.nlm.nih.gov/pubmed/34349576 http://dx.doi.org/10.2147/RMHP.S318265 |
Ejemplares similares
-
Application of a prediction model with laboratory indexes in the risk stratification of patients with COVID-19
por: Ye, Jiru, et al.
Publicado: (2021) -
Delirium misdiagnosis risk in psychiatry: a machine learning-logistic regression predictive algorithm
por: Hercus, Catherine, et al.
Publicado: (2020) -
Robust Machine Learning for Colorectal Cancer Risk Prediction and Stratification
por: Nartowt, Bradley J., et al.
Publicado: (2020) -
Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis
por: Suzuki, Shinya, et al.
Publicado: (2019) -
Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models
por: Alaka, Shakiru A., et al.
Publicado: (2020)