Cargando…
Using comprehensive machine‐learning models to classify complex morphological characters
1. Recognizing and classifying multiple morphological features, such as patterns, sizes, and textures, can provide a comprehensive understanding of their variability and phenotypic evolution. Yet, quantitatively measuring complex morphological characters remains challenging. 2. We provide a machine...
Autores principales: | Teng, Dequn, Li, Fengyuan, Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328437/ https://www.ncbi.nlm.nih.gov/pubmed/34367585 http://dx.doi.org/10.1002/ece3.7845 |
Ejemplares similares
-
Generative and reproducible benchmarks or comprehensive evaluation machine learning classifiers
por: Orzechowski, Patryk, et al.
Publicado: (2022) -
Information in morphological characters
por: Yu, Congyu, et al.
Publicado: (2021) -
Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study
por: Visweswaran, Shyam, et al.
Publicado: (2020) -
Relations and dependencies between morphological characters
por: Jost, Jürgen
Publicado: (2017) -
Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning
por: Sahli-Costabal, Francisco, et al.
Publicado: (2020)