Cargando…
Machine learned hybrid Gaussian analysis of COVID-19 pandemic in India
This article discusses short term forecasting of the Novel Corona Virus (COVID −19) data for infected, recovered and active cases using the Machine learned hybrid Gaussian and ARIMA method for the spread in India. The Covid-19 data is obtained from the World meter and MOH (Ministry of Health, India)...
Autores principales: | Bhardwaj, Shivam, Alowaidi, Majed, Bhardwaj, Rashmi, Sharma, Sunil Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328529/ https://www.ncbi.nlm.nih.gov/pubmed/34367891 http://dx.doi.org/10.1016/j.rinp.2021.104630 |
Ejemplares similares
-
Hybridized wavelet neuronal learning-based modelling to predict novel COVID-19 effects in India and USA
por: Bhardwaj, Rashmi, et al.
Publicado: (2022) -
Nonlinear dynamics for the spread of pathogenesis of COVID-19 pandemic
por: Sharma, Sunil Kumar, et al.
Publicado: (2021) -
Gaussian processes for machine learning
por: Rasmussen, Carl Edward, et al.
Publicado: (2006) -
Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques
por: Bhardwaj, Rashmi, et al.
Publicado: (2020) -
Association between climatic variables and COVID-19 pandemic in National Capital Territory of Delhi, India
por: Singh, Omvir, et al.
Publicado: (2020)