Cargando…
Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow
Automated segmentation templates can save clinicians time compared to de novo segmentation but may still take substantial time to review and correct. It has not been thoroughly investigated which automated segmentation-corrected segmentation similarity metrics best predict clinician correction time....
Autores principales: | Kiser, Kendall J., Barman, Arko, Stieb, Sonja, Fuller, Clifton D., Giancardo, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329111/ https://www.ncbi.nlm.nih.gov/pubmed/34027588 http://dx.doi.org/10.1007/s10278-021-00460-3 |
Ejemplares similares
-
PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines
por: Kiser, Kendall J., et al.
Publicado: (2020) -
The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy
por: Beasley, William J., et al.
Publicado: (2016) -
A Novel Metric to Evaluate In Situ Workflows
por: Do, Tu Mai Anh, et al.
Publicado: (2020) -
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
por: Kong, Youyong, et al.
Publicado: (2014) -
Towards a guideline for evaluation metrics in medical image segmentation
por: Müller, Dominik, et al.
Publicado: (2022)