Cargando…
Neuromorphic computation with a single magnetic domain wall
Machine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic devices, a...
Autores principales: | Ababei, Razvan V., Ellis, Matthew O. A., Vidamour, Ian T., Devadasan, Dhilan S., Allwood, Dan A., Vasilaki, Eleni, Hayward, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329183/ https://www.ncbi.nlm.nih.gov/pubmed/34341380 http://dx.doi.org/10.1038/s41598-021-94975-y |
Ejemplares similares
-
Magnetic Elements for Neuromorphic Computing
por: Blachowicz, Tomasz, et al.
Publicado: (2020) -
A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
por: Yue, Kun, et al.
Publicado: (2019) -
Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain
por: Iyer, Laxmi R., et al.
Publicado: (2021) -
A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
por: Vanattou-Saïfoudine, Natacha, et al.
Publicado: (2021) -
Synaptic weighting in single flux quantum neuromorphic computing
por: Schneider, M. L., et al.
Publicado: (2020)