Cargando…
A stacking ensemble deep learning approach to cancer type classification based on TCGA data
Cancer tumor classification based on morphological characteristics alone has been shown to have serious limitations. Breast, lung, colorectal, thyroid, and ovarian are the most commonly diagnosed cancers among women. Precise classification of cancers into their types is considered a vital problem fo...
Autores principales: | Mohammed, Mohanad, Mwambi, Henry, Mboya, Innocent B., Elbashir, Murtada K., Omolo, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329290/ https://www.ncbi.nlm.nih.gov/pubmed/34341396 http://dx.doi.org/10.1038/s41598-021-95128-x |
Ejemplares similares
-
Predictors of colorectal cancer survival using cox regression and random survival forests models based on gene expression data
por: Mohammed, Mohanad, et al.
Publicado: (2021) -
Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania
por: Mboya, Innocent B, et al.
Publicado: (2020) -
Brain Tumor Classification based on Improved Stacked Ensemble Deep Learning Methods
por: Al-Azzwi, Zobeda Hatif Naji, et al.
Publicado: (2023) -
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
por: Bakasa, Wilson, et al.
Publicado: (2023) -
A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models
por: Sivari, Esra, et al.
Publicado: (2023)