Cargando…
A Primer on Hyperdimensional Computing for iEEG Seizure Detection
A central challenge in today's care of epilepsy patients is that the disease dynamics are severely under-sampled in the currently typical setting with appointment-based clinical and electroencephalographic examinations. Implantable devices to monitor electrical brain signals and to detect epile...
Autores principales: | Schindler, Kaspar A., Rahimi, Abbas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329339/ https://www.ncbi.nlm.nih.gov/pubmed/34354666 http://dx.doi.org/10.3389/fneur.2021.701791 |
Ejemplares similares
-
Multi-Centroid Hyperdimensional Computing Approach for Epileptic Seizure Detection
por: Pale, Una, et al.
Publicado: (2022) -
Online Prediction of Lead Seizures from iEEG Data
por: Chen, Hsiang-Han, et al.
Publicado: (2021) -
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
A multi-frame network model for predicting seizure based on sEEG and iEEG data
por: Lu, Liangfu, et al.
Publicado: (2022) -
Granger Causality Analysis of Interictal iEEG Predicts Seizure Focus and Ultimate Resection
por: Park, Eun-Hyoung, et al.
Publicado: (2018)