Cargando…
Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation
Sustainable planning of waste management is contingent on reliable data on waste characteristics and their variation across the seasons owing to the consequential environmental impact of such variation. Traditional waste characterization techniques in most developing countries are time-consuming and...
Autores principales: | Adeleke, Oluwatobi, Akinlabi, Stephen A, Jen, Tien-Chien, Dunmade, Israel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329446/ https://www.ncbi.nlm.nih.gov/pubmed/33596781 http://dx.doi.org/10.1177/0734242X21991642 |
Ejemplares similares
-
Municipal solid wastes and their disposal.
por: Stone, R
Publicado: (1978) -
Seasonal methane emission from municipal solid waste disposal sites in Lagos, Nigeria
por: Riman, H. S., et al.
Publicado: (2022) -
Municipal solid waste incinerator residues
Publicado: (1997) -
Composting and recycling municipal solid waste /
Publicado: (1993) -
Exploration and prediction of wet season municipal solid waste for power generation in Ilorin metropolis, Nigeria
por: Ibikunle, Rotimi Adedayo
Publicado: (2022)