Cargando…

Effect of Temperature and Maternal Age on Recombination Rate in Cattle

Meiotic recombination is a fundamental biological process that facilitates meiotic division and promotes genetic diversity. Recombination is phenotypically plastic and affected by both intrinsic and extrinsic factors. The effect of maternal age on recombination rates has been characterized in a wide...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Botong, Freebern, Ellen, Jiang, Jicai, Maltecca, Christian, Cole, John B., Liu, George E., Ma, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329537/
https://www.ncbi.nlm.nih.gov/pubmed/34354736
http://dx.doi.org/10.3389/fgene.2021.682718
Descripción
Sumario:Meiotic recombination is a fundamental biological process that facilitates meiotic division and promotes genetic diversity. Recombination is phenotypically plastic and affected by both intrinsic and extrinsic factors. The effect of maternal age on recombination rates has been characterized in a wide range of species, but the effect’s direction remains inconclusive. Additionally, the characterization of temperature effects on recombination has been limited to model organisms. Here we seek to comprehensively determine the impact of genetic and environmental factors on recombination rate in dairy cattle. Using a large cattle pedigree, we identified maternal recombination events within 305,545 three-generation families. By comparing recombination rate between parents of different ages, we found a quadratic trend between maternal age and recombination rate in cattle. In contrast to either an increasing or decreasing trend in humans, cattle recombination rate decreased with maternal age until 65 months and then increased afterward. Combining recombination data with temperature information from public databases, we found a positive correlation between environmental temperature during fetal development of offspring and recombination rate in female parents. Finally, we fitted a full recombination rate model on all related factors, including genetics, maternal age, and environmental temperatures. Based on the final model, we confirmed the effect of maternal age and environmental temperature during fetal development of offspring on recombination rate with an estimated heritability of 10% (SE = 0.03) in cattle. Collectively, we characterized the maternal age and temperature effects on recombination rate and suggested the adaptation of meiotic recombination to environmental stimuli in cattle. Our results provided first-hand information regarding the plastic nature of meiotic recombination in a mammalian species.