Cargando…
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment
BACKGROUND: The endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia, however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in lung adenocarcinoma (LUA...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329662/ https://www.ncbi.nlm.nih.gov/pubmed/34354701 http://dx.doi.org/10.3389/fimmu.2021.677169 |
_version_ | 1783732559983673344 |
---|---|
author | Liu, Lihui Wang, Chao Li, Sini Qu, Yan Xue, Pei Ma, Zixiao Zhang, Xue Bai, Hua Wang, Jie |
author_facet | Liu, Lihui Wang, Chao Li, Sini Qu, Yan Xue, Pei Ma, Zixiao Zhang, Xue Bai, Hua Wang, Jie |
author_sort | Liu, Lihui |
collection | PubMed |
description | BACKGROUND: The endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia, however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in lung adenocarcinoma (LUAD). METHODS: In this study, raw datasets (including RNA-seq, methylation, sgRNA-seq, phenotype, and survival data) were obtained from public databases. This data was analyzed and used to explore the biological landscape of ERO1L in immune infiltration. Expression data was used to characterize samples. Using gene signatures and cell quantification, stromal and immune infiltration was determined. These findings were used to predict sensitivity to immunotherapy. RESULTS: This study found that ERO1L was significantly overexpressed in LUAD in comparison to normal tissue. This overexpression was found to be a result of hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an immune-suppressive TIME via the recruitment of immune-suppressive cells including regulatory T cells (T(regs)), cancer associated fibroblasts, M2-type macrophages, and myeloid-derived suppressor cells. Using the Tumor Immune Dysfunction and Exclusion (TIDE) framework, it was identified that patients in the ERO1L (high) group possessed a significantly lower response rate to immunotherapy in comparison to the ERO1L (low) group. Mechanistic analysis revealed that overexpression of ERO1L was associated with the upregulation of JAK-STAT and NF-κB signaling pathways, thus affecting chemokine and cytokine patterns in the TIME. CONCLUSIONS: This study found that overexpression of ERO1L was associated with poor prognoses in patients with LUAD. Overexpression of ERO1L was indicative of a hypoxia-induced immune-suppressive TIME, which was shown to confer resistance to immunotherapy in patients with LUAD. Further studies are required to assess the potential role of ERO1L as a biomarker for immunotherapy efficacy in LUAD. |
format | Online Article Text |
id | pubmed-8329662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83296622021-08-04 ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment Liu, Lihui Wang, Chao Li, Sini Qu, Yan Xue, Pei Ma, Zixiao Zhang, Xue Bai, Hua Wang, Jie Front Immunol Immunology BACKGROUND: The endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia, however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in lung adenocarcinoma (LUAD). METHODS: In this study, raw datasets (including RNA-seq, methylation, sgRNA-seq, phenotype, and survival data) were obtained from public databases. This data was analyzed and used to explore the biological landscape of ERO1L in immune infiltration. Expression data was used to characterize samples. Using gene signatures and cell quantification, stromal and immune infiltration was determined. These findings were used to predict sensitivity to immunotherapy. RESULTS: This study found that ERO1L was significantly overexpressed in LUAD in comparison to normal tissue. This overexpression was found to be a result of hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an immune-suppressive TIME via the recruitment of immune-suppressive cells including regulatory T cells (T(regs)), cancer associated fibroblasts, M2-type macrophages, and myeloid-derived suppressor cells. Using the Tumor Immune Dysfunction and Exclusion (TIDE) framework, it was identified that patients in the ERO1L (high) group possessed a significantly lower response rate to immunotherapy in comparison to the ERO1L (low) group. Mechanistic analysis revealed that overexpression of ERO1L was associated with the upregulation of JAK-STAT and NF-κB signaling pathways, thus affecting chemokine and cytokine patterns in the TIME. CONCLUSIONS: This study found that overexpression of ERO1L was associated with poor prognoses in patients with LUAD. Overexpression of ERO1L was indicative of a hypoxia-induced immune-suppressive TIME, which was shown to confer resistance to immunotherapy in patients with LUAD. Further studies are required to assess the potential role of ERO1L as a biomarker for immunotherapy efficacy in LUAD. Frontiers Media S.A. 2021-07-20 /pmc/articles/PMC8329662/ /pubmed/34354701 http://dx.doi.org/10.3389/fimmu.2021.677169 Text en Copyright © 2021 Liu, Wang, Li, Qu, Xue, Ma, Zhang, Bai and Wang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Liu, Lihui Wang, Chao Li, Sini Qu, Yan Xue, Pei Ma, Zixiao Zhang, Xue Bai, Hua Wang, Jie ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title |
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title_full |
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title_fullStr |
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title_full_unstemmed |
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title_short |
ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment |
title_sort | ero1l is a novel and potential biomarker in lung adenocarcinoma and shapes the immune-suppressive tumor microenvironment |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329662/ https://www.ncbi.nlm.nih.gov/pubmed/34354701 http://dx.doi.org/10.3389/fimmu.2021.677169 |
work_keys_str_mv | AT liulihui ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT wangchao ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT lisini ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT quyan ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT xuepei ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT mazixiao ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT zhangxue ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT baihua ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment AT wangjie ero1lisanovelandpotentialbiomarkerinlungadenocarcinomaandshapestheimmunesuppressivetumormicroenvironment |