Cargando…

The impact of physical training on neutrophil extracellular traps in young male athletes – a pilot study

Neutrophils are an important component of the innate immune response against various pathogens. However, there is a lack of research concerning the effects of short intensive training on neutrophil functions, especially neutrophil extracellular traps (NET) formation. The study aim was to determine t...

Descripción completa

Detalles Bibliográficos
Autores principales: Orysiak, Joanna, Tripathi, Jitendra K., Brodaczewska, Klaudia, Sharma, Atul, Witek, Konrad, Sitkowski, Dariusz, Malczewska-Lenczowska, Jadwiga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Institute of Sport in Warsaw 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329969/
https://www.ncbi.nlm.nih.gov/pubmed/34475627
http://dx.doi.org/10.5114/biolsport.2021.101117
Descripción
Sumario:Neutrophils are an important component of the innate immune response against various pathogens. However, there is a lack of research concerning the effects of short intensive training on neutrophil functions, especially neutrophil extracellular traps (NET) formation. The study aim was to determine the effects of a 19-day training cycle on innate immunity among young male athletes. Six male ice hockey players (< 20 years old) from the Polish national team were monitored across a five-day training camp and after a return to normal club training. The first blood collection took place before training (T1), the second after the training camp (T2) and the third 14 days later (T3). The counts/concentrations of blood biochemical, immune and endocrine markers were compared across each training period. Creatine kinase activity tended to increase at T2 (546 ± 216 U·L(-1)) when compared to T1 (191 ± 111 U·L(-1); p=0.063). Neutrophil extracellular traps formation and neutrophil counts also differed between training periods (p=0.042 and p=0.042, respectively). Neutrophil counts tended to decrease, in contrast to NET formation which tended to rise, at T2 in comparison to T1 (2.51 ± 0.45 vs 3.04 ± 0.47 109·L(-1); 24 ± 13 vs 8 ± 15%, respectively). No significant differences in other leucocyte counts were observed. A short period of intensive training was accompanied by some muscle damage and inflammation, as evidenced by CK and NET up-regulation, whilst neutrophil counts were diminished in the blood. Thus, neutrophils and NET could be involved in muscle damage and local inflammatory processes following intensive physical training in young male athletes.