Cargando…
A comparison of machine learning classifiers for pediatric epilepsy using resting-state functional MRI latency data
Epilepsy affects 1 in 150 children under the age of 10 and is the most common chronic pediatric neurological condition; poor seizure control can irreversibly disrupt normal brain development. The present study compared the ability of different machine learning algorithms trained with resting-state f...
Autores principales: | Nguyen, Ryan D., Smyth, Matthew D., Zhu, Liang, Pao, Ludovic P., Swisher, Shannon K., Kennady, Emmett H., Mitra, Anish, Patel, Rajan P., Lankford, Jeremy E., Von Allmen, Gretchen, Watkins, Michael W., Funke, Michael E., Shah, Manish N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330002/ https://www.ncbi.nlm.nih.gov/pubmed/34405049 http://dx.doi.org/10.3892/br.2021.1453 |
Ejemplares similares
-
Complete corpus callosotomy using a frameless navigation probe through a minicraniotomy in children with medically refractory epilepsy: A case series and technical note
por: Belal, Ahmed, et al.
Publicado: (2022) -
Practical Fundamentals of Clinical MEG Interpretation in Epilepsy
por: Laohathai, Christopher, et al.
Publicado: (2021) -
Indications for Inpatient Magnetoencephalography in Children – An Institution’s Experience
por: Watkins, Michael W., et al.
Publicado: (2021) -
An individual data-driven virtual resection model based on epileptic network dynamics in children with intractable epilepsy: a magnetoencephalography interictal activity application
por: Cuesta, Pablo, et al.
Publicado: (2023) -
Centrosomal Latency of Incoming Foamy Viruses in Resting Cells
por: Lehmann-Che, Jacqueline, et al.
Publicado: (2007)