Cargando…
Treatment outcome clustering patterns correspond to discrete asthma phenotypes in children
Despite widely and regularly used therapy asthma in children is not fully controlled. Recognizing the complexity of asthma phenotypes and endotypes imposed the concept of precision medicine in asthma treatment. By applying machine learning algorithms assessed with respect to their accuracy in predic...
Autores principales: | Banić, Ivana, Lovrić, Mario, Cuder, Gerald, Kern, Roman, Rijavec, Matija, Korošec, Peter, Turkalj, Mirjana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330019/ https://www.ncbi.nlm.nih.gov/pubmed/34344475 http://dx.doi.org/10.1186/s40733-021-00077-x |
Ejemplares similares
-
Predicting Treatment Outcomes Using Explainable Machine Learning in Children with Asthma
por: Lovrić, Mario, et al.
Publicado: (2021) -
T2-high Asthma, Classified by Sputum mRNA Expression of IL4, IL5, and IL13, is Characterized by Eosinophilia and Severe Phenotype
por: Rijavec, Matija, et al.
Publicado: (2021) -
Let-7a is differentially expressed in bronchial biopsies of
patients with severe asthma
por: Rijavec, Matija, et al.
Publicado: (2014) -
A review of clinical efficacy, safety, new developments and adherence to allergen-specific immunotherapy in patients with allergic rhinitis caused by allergy to ragweed pollen (Ambrosia artemisiifolia)
por: Turkalj, Mirjana, et al.
Publicado: (2017) -
Heterogeneous Response of Airway Eosinophilia to Anti-IL-5 Biologics in Severe Asthma Patients
por: Šokić, Maruša Kopač, et al.
Publicado: (2022)