Cargando…
Virtual Patient-Specific Quality Assurance of IMRT Using UNet++: Classification, Gamma Passing Rates Prediction, and Dose Difference Prediction
The dose verification in radiotherapy quality assurance (QA) is time-consuming and places a heavy workload on medical physicists. To provide a clinical tool to perform patient specific QA accurately, the UNet++ is investigated to classify failed or pass fields (the GPR lower than 85% is considered “...
Autores principales: | Huang, Ying, Pi, Yifei, Ma, Kui, Miao, Xiaojuan, Fu, Sichao, Chen, Hua, Wang, Hao, Gu, Hengle, Shao, Yan, Duan, Yanhua, Feng, Aihui, Wang, Jiyong, Cai, Ruxin, Zhuo, Weihai, Xu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330420/ https://www.ncbi.nlm.nih.gov/pubmed/34354949 http://dx.doi.org/10.3389/fonc.2021.700343 |
Ejemplares similares
-
Deep Learning for Patient-Specific Quality Assurance: Predicting Gamma Passing Rates for IMRT Based on Delivery Fluence Informed by log Files
por: Huang, Ying, et al.
Publicado: (2022) -
Image-based features in machine learning to identify delivery errors and predict error magnitude for patient-specific IMRT quality assurance
por: Huang, Ying, et al.
Publicado: (2023) -
Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features
por: Huang, Ying, et al.
Publicado: (2022) -
Investigation of Predictors to Achieve Acceptable Lung Dose in T-Shaped Upper and Middle Esophageal Cancer With IMRT and VMAT
por: Shao, Yan, et al.
Publicado: (2021) -
A novel CRT‐IMRT‐combined (Co‐CRIM) planning technique for peripheral lung stereotactic body radiotherapy in pinnacle treatment planning system
por: Duan, YanHua, et al.
Publicado: (2021)