Cargando…
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architec...
Autores principales: | Alshazly, Hammam, Linse, Christoph, Abdalla, Mohamed, Barth, Erhardt, Martinetz, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330434/ https://www.ncbi.nlm.nih.gov/pubmed/34401477 http://dx.doi.org/10.7717/peerj-cs.655 |
Ejemplares similares
-
Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning
por: Alshazly, Hammam, et al.
Publicado: (2021) -
Ensembles of Deep Learning Models and Transfer Learning for Ear Recognition
por: Alshazly, Hammam, et al.
Publicado: (2019) -
A walk in the black-box: 3D visualization of large neural networks in virtual reality
por: Linse, Christoph, et al.
Publicado: (2022) -
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization
por: Hamza, Ameer, et al.
Publicado: (2022)