Cargando…
Deidentification of free-text medical records using pre-trained bidirectional transformers
The ability of caregivers and investigators to share patient data is fundamental to many areas of clinical practice and biomedical research. Prior to sharing, it is often necessary to remove identifiers such as names, contact details, and dates in order to protect patient privacy. Deidentification,...
Autores principales: | Johnson, Alistair E. W., Bulgarelli, Lucas, Pollard, Tom J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330601/ https://www.ncbi.nlm.nih.gov/pubmed/34350426 http://dx.doi.org/10.1145/3368555.3384455 |
Ejemplares similares
-
Re-examination of Rule-Based Methods in Deidentification of Electronic Health Records: Algorithm Development and Validation
por: Zhao, Zhenyu, et al.
Publicado: (2020) -
Consent and Deidentification of Patient Images in Dermatology Journals: Observational Study
por: Nanda, Japbani K, et al.
Publicado: (2022) -
Development and evaluation of an open source software tool for deidentification of pathology reports
por: Beckwith, Bruce A, et al.
Publicado: (2006) -
Private Face Image Generation Method Based on Deidentification in Low Light
por: Dong, Beibei, et al.
Publicado: (2022) -
k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification †
por: Meden, Blaž, et al.
Publicado: (2018)