Cargando…
UTMD promoted local delivery of miR-34a-mimic for ovarian cancer therapy
MicroRNA-mediated gene therapy is emerging as a promising method for the treatment of ovarian cancer, but the development of miRNA mimic delivery vectors is still in its infancy, where the safety and efficacy of miR-34a-mimic remain unknown. Ultrasound-targeted microbubble destruction (UTMD) can be...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330777/ https://www.ncbi.nlm.nih.gov/pubmed/34319204 http://dx.doi.org/10.1080/10717544.2021.1955041 |
Sumario: | MicroRNA-mediated gene therapy is emerging as a promising method for the treatment of ovarian cancer, but the development of miRNA mimic delivery vectors is still in its infancy, where the safety and efficacy of miR-34a-mimic remain unknown. Ultrasound-targeted microbubble destruction (UTMD) can be an effective and minimally invasive tool for the delivery of miR-34a-mimic in vitro and in vivo. Here, we describe a high-efficiency gene delivery strategy by using miR-34a-mimic loaded folate modified microbubbles (miR-34a-FM) with a portable ultrasonic irradiation system. Ultrasonic parameters, including acoustic intensity (AI), exposure time (ET) and duty cycle (DC), were optimized and the optimal acoustic condition (1.0 W/cm(2), 20 s, and 15% DC) was used to deliver miRNA-34a into cells in vitro. MiR-34a mimic was successfully introduced into the cytoplasm and was found to inhibit proliferation and induce apoptosis of SK-OV-3 cells. Next, miR-34a-mimic was delivered to tumor tissue via UTMD, inhibiting tumor growth and prolonging the survival time of mice. In summary, UTMD-mediated miR-34a-mimic delivery has potential application in the clinical treatment of ovarian cancer. |
---|