Cargando…
In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS
Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330795/ https://www.ncbi.nlm.nih.gov/pubmed/34338123 http://dx.doi.org/10.1080/10717544.2021.1960922 |
_version_ | 1783732795352285184 |
---|---|
author | Chen, Linlin Guo, Xiangli Wang, Lidan Geng, Jingping Wu, Jiao Hu, Bin Wang, Tao Li, Jason Liu, Changbai Wang, Hu |
author_facet | Chen, Linlin Guo, Xiangli Wang, Lidan Geng, Jingping Wu, Jiao Hu, Bin Wang, Tao Li, Jason Liu, Changbai Wang, Hu |
author_sort | Chen, Linlin |
collection | PubMed |
description | Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos. |
format | Online Article Text |
id | pubmed-8330795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-83307952021-08-09 In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS Chen, Linlin Guo, Xiangli Wang, Lidan Geng, Jingping Wu, Jiao Hu, Bin Wang, Tao Li, Jason Liu, Changbai Wang, Hu Drug Deliv Research Article Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos. Taylor & Francis 2021-08-02 /pmc/articles/PMC8330795/ /pubmed/34338123 http://dx.doi.org/10.1080/10717544.2021.1960922 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Linlin Guo, Xiangli Wang, Lidan Geng, Jingping Wu, Jiao Hu, Bin Wang, Tao Li, Jason Liu, Changbai Wang, Hu In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title | In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title_full | In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title_fullStr | In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title_full_unstemmed | In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title_short | In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS |
title_sort | in silico identification and experimental validation of cellular uptake by a new cell penetrating peptide p1 derived from marcks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330795/ https://www.ncbi.nlm.nih.gov/pubmed/34338123 http://dx.doi.org/10.1080/10717544.2021.1960922 |
work_keys_str_mv | AT chenlinlin insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT guoxiangli insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT wanglidan insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT gengjingping insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT wujiao insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT hubin insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT wangtao insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT lijason insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT liuchangbai insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks AT wanghu insilicoidentificationandexperimentalvalidationofcellularuptakebyanewcellpenetratingpeptidep1derivedfrommarcks |