Cargando…
Neural network model assisted Fourier ptychography with Zernike aberration recovery and total variation constraint
Significance: Fourier ptychography (FP) is a computational imaging approach that achieves high-resolution reconstruction. Inspired by neural networks, many deep-learning-based methods are proposed to solve FP problems. However, the performance of FP still suffers from optical aberration, which needs...
Autores principales: | Zhang, Yongbing, Liu, Yangzhe, Jiang, Shaowei, Dixit, Krishna, Song, Pengming, Zhang, Xinfeng, Ji, Xiangyang, Li, Xiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330837/ https://www.ncbi.nlm.nih.gov/pubmed/33768741 http://dx.doi.org/10.1117/1.JBO.26.3.036502 |
Ejemplares similares
-
Using Fourier ptychography microscopy to achieve high-resolution chromosome imaging: an initial evaluation
por: Zhang, Ke, et al.
Publicado: (2022) -
Dither removing Fourier ptychographic microscope based on a two-axis rotation stage
por: Huang, Kaicheng, et al.
Publicado: (2021) -
Accurate and stable two-step LED position calibration method for Fourier ptychographic microscopy
por: Wei, Haojie, et al.
Publicado: (2021) -
Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy
por: Wu, Yicong, et al.
Publicado: (2010) -
X-ray Fourier ptychography
por: Wakonig, Klaus, et al.
Publicado: (2019)