Cargando…
The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model
The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith–Wiedemann syndrome (BWS) and Silver-Russell syn...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330897/ https://www.ncbi.nlm.nih.gov/pubmed/34132339 http://dx.doi.org/10.1093/hmg/ddab132 |
_version_ | 1783732817412227072 |
---|---|
author | Freschi, Andrea Del Prete, Rosita Pignata, Laura Cecere, Francesco Manfrevola, Francesco Mattia, Monica Cobellis, Gilda Sparago, Angela Bartolomei, Marisa S Riccio, Andrea Cerrato, Flavia |
author_facet | Freschi, Andrea Del Prete, Rosita Pignata, Laura Cecere, Francesco Manfrevola, Francesco Mattia, Monica Cobellis, Gilda Sparago, Angela Bartolomei, Marisa S Riccio, Andrea Cerrato, Flavia |
author_sort | Freschi, Andrea |
collection | PubMed |
description | The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith–Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1∆2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1∆1.8). The phenotype of these mice is different from that of the hIC1∆2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1Δ1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1Δ1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression. |
format | Online Article Text |
id | pubmed-8330897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-83308972021-08-04 The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model Freschi, Andrea Del Prete, Rosita Pignata, Laura Cecere, Francesco Manfrevola, Francesco Mattia, Monica Cobellis, Gilda Sparago, Angela Bartolomei, Marisa S Riccio, Andrea Cerrato, Flavia Hum Mol Genet General Article The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith–Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1∆2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1∆1.8). The phenotype of these mice is different from that of the hIC1∆2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1Δ1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1Δ1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression. Oxford University Press 2021-05-05 /pmc/articles/PMC8330897/ /pubmed/34132339 http://dx.doi.org/10.1093/hmg/ddab132 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | General Article Freschi, Andrea Del Prete, Rosita Pignata, Laura Cecere, Francesco Manfrevola, Francesco Mattia, Monica Cobellis, Gilda Sparago, Angela Bartolomei, Marisa S Riccio, Andrea Cerrato, Flavia The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title | The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title_full | The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title_fullStr | The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title_full_unstemmed | The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title_short | The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model |
title_sort | number of the ctcf binding sites of the h19/igf2:ig-dmr correlates with dna methylation and expression imprinting in a humanized mouse model |
topic | General Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330897/ https://www.ncbi.nlm.nih.gov/pubmed/34132339 http://dx.doi.org/10.1093/hmg/ddab132 |
work_keys_str_mv | AT freschiandrea thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT delpreterosita thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT pignatalaura thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cecerefrancesco thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT manfrevolafrancesco thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT mattiamonica thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cobellisgilda thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT sparagoangela thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT bartolomeimarisas thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT riccioandrea thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cerratoflavia thenumberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT freschiandrea numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT delpreterosita numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT pignatalaura numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cecerefrancesco numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT manfrevolafrancesco numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT mattiamonica numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cobellisgilda numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT sparagoangela numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT bartolomeimarisas numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT riccioandrea numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel AT cerratoflavia numberofthectcfbindingsitesoftheh19igf2igdmrcorrelateswithdnamethylationandexpressionimprintinginahumanizedmousemodel |