Cargando…

Solving dynamic multi-objective problems with a new prediction-based optimization algorithm

This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qingyang, Jiang, Shouyong, Yang, Shengxiang, Song, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330920/
https://www.ncbi.nlm.nih.gov/pubmed/34343178
http://dx.doi.org/10.1371/journal.pone.0254839
Descripción
Sumario:This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-based reaction mechanism aims to generate high-quality population when changes occur, which includes three subpopulations for tracking the moving Pareto-optimal set effectively. The first subpopulation is created by a simple linear prediction model with two different stepsizes. The second subpopulation consists of some new sampling individuals generated by the fitting-based prediction strategy. The third subpopulation is created by employing a recent sampling strategy, generating some effective search individuals for improving population convergence and diversity. Experimental results on a set of benchmark functions with a variety of different dynamic characteristics and difficulties illustrate that the proposed algorithm has competitive effectiveness compared with some state-of-the-art algorithms.