Cargando…
Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pat...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331182/ https://www.ncbi.nlm.nih.gov/pubmed/34343089 http://dx.doi.org/10.7554/eLife.59828 |
_version_ | 1783732867052863488 |
---|---|
author | Lauritzen, Knut H Olsen, Maria Belland Ahmed, Mohammed Shakil Yang, Kuan Rinholm, Johanne Egge Bergersen, Linda H Esbensen, Qin Ying Sverkeli, Lars Jansen Ziegler, Mathias Attramadal, Håvard Halvorsen, Bente Aukrust, Pål Yndestad, Arne |
author_facet | Lauritzen, Knut H Olsen, Maria Belland Ahmed, Mohammed Shakil Yang, Kuan Rinholm, Johanne Egge Bergersen, Linda H Esbensen, Qin Ying Sverkeli, Lars Jansen Ziegler, Mathias Attramadal, Håvard Halvorsen, Bente Aukrust, Pål Yndestad, Arne |
author_sort | Lauritzen, Knut H |
collection | PubMed |
description | Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac dysfunction via reduced NAD(+) levels and loss of mitochondrial function and communication. Using a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause a reduction in NAD(+) levels due to extreme DNA repair activity, causing impaired activation of NAD(+)-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology. Consequently, high doses of NR should be used with caution, especially when cardiomyopathic symptoms are caused by mitochondrial dysfunction and instability of mtDNA. |
format | Online Article Text |
id | pubmed-8331182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-83311822021-08-04 Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication Lauritzen, Knut H Olsen, Maria Belland Ahmed, Mohammed Shakil Yang, Kuan Rinholm, Johanne Egge Bergersen, Linda H Esbensen, Qin Ying Sverkeli, Lars Jansen Ziegler, Mathias Attramadal, Håvard Halvorsen, Bente Aukrust, Pål Yndestad, Arne eLife Biochemistry and Chemical Biology Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac dysfunction via reduced NAD(+) levels and loss of mitochondrial function and communication. Using a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause a reduction in NAD(+) levels due to extreme DNA repair activity, causing impaired activation of NAD(+)-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology. Consequently, high doses of NR should be used with caution, especially when cardiomyopathic symptoms are caused by mitochondrial dysfunction and instability of mtDNA. eLife Sciences Publications, Ltd 2021-08-03 /pmc/articles/PMC8331182/ /pubmed/34343089 http://dx.doi.org/10.7554/eLife.59828 Text en © 2021, Lauritzen et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Lauritzen, Knut H Olsen, Maria Belland Ahmed, Mohammed Shakil Yang, Kuan Rinholm, Johanne Egge Bergersen, Linda H Esbensen, Qin Ying Sverkeli, Lars Jansen Ziegler, Mathias Attramadal, Håvard Halvorsen, Bente Aukrust, Pål Yndestad, Arne Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title | Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title_full | Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title_fullStr | Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title_full_unstemmed | Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title_short | Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication |
title_sort | instability in nad(+) metabolism leads to impaired cardiac mitochondrial function and communication |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331182/ https://www.ncbi.nlm.nih.gov/pubmed/34343089 http://dx.doi.org/10.7554/eLife.59828 |
work_keys_str_mv | AT lauritzenknuth instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT olsenmariabelland instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT ahmedmohammedshakil instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT yangkuan instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT rinholmjohanneegge instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT bergersenlindah instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT esbensenqinying instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT sverkelilarsjansen instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT zieglermathias instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT attramadalhavard instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT halvorsenbente instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT aukrustpal instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication AT yndestadarne instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication |