Cargando…

Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication

Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lauritzen, Knut H, Olsen, Maria Belland, Ahmed, Mohammed Shakil, Yang, Kuan, Rinholm, Johanne Egge, Bergersen, Linda H, Esbensen, Qin Ying, Sverkeli, Lars Jansen, Ziegler, Mathias, Attramadal, Håvard, Halvorsen, Bente, Aukrust, Pål, Yndestad, Arne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331182/
https://www.ncbi.nlm.nih.gov/pubmed/34343089
http://dx.doi.org/10.7554/eLife.59828
_version_ 1783732867052863488
author Lauritzen, Knut H
Olsen, Maria Belland
Ahmed, Mohammed Shakil
Yang, Kuan
Rinholm, Johanne Egge
Bergersen, Linda H
Esbensen, Qin Ying
Sverkeli, Lars Jansen
Ziegler, Mathias
Attramadal, Håvard
Halvorsen, Bente
Aukrust, Pål
Yndestad, Arne
author_facet Lauritzen, Knut H
Olsen, Maria Belland
Ahmed, Mohammed Shakil
Yang, Kuan
Rinholm, Johanne Egge
Bergersen, Linda H
Esbensen, Qin Ying
Sverkeli, Lars Jansen
Ziegler, Mathias
Attramadal, Håvard
Halvorsen, Bente
Aukrust, Pål
Yndestad, Arne
author_sort Lauritzen, Knut H
collection PubMed
description Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac dysfunction via reduced NAD(+) levels and loss of mitochondrial function and communication. Using a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause a reduction in NAD(+) levels due to extreme DNA repair activity, causing impaired activation of NAD(+)-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology. Consequently, high doses of NR should be used with caution, especially when cardiomyopathic symptoms are caused by mitochondrial dysfunction and instability of mtDNA.
format Online
Article
Text
id pubmed-8331182
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-83311822021-08-04 Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication Lauritzen, Knut H Olsen, Maria Belland Ahmed, Mohammed Shakil Yang, Kuan Rinholm, Johanne Egge Bergersen, Linda H Esbensen, Qin Ying Sverkeli, Lars Jansen Ziegler, Mathias Attramadal, Håvard Halvorsen, Bente Aukrust, Pål Yndestad, Arne eLife Biochemistry and Chemical Biology Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD(+)) as energy source. Prolonged PARP activity can drain cellular NAD(+) reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac dysfunction via reduced NAD(+) levels and loss of mitochondrial function and communication. Using a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause a reduction in NAD(+) levels due to extreme DNA repair activity, causing impaired activation of NAD(+)-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology. Consequently, high doses of NR should be used with caution, especially when cardiomyopathic symptoms are caused by mitochondrial dysfunction and instability of mtDNA. eLife Sciences Publications, Ltd 2021-08-03 /pmc/articles/PMC8331182/ /pubmed/34343089 http://dx.doi.org/10.7554/eLife.59828 Text en © 2021, Lauritzen et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Lauritzen, Knut H
Olsen, Maria Belland
Ahmed, Mohammed Shakil
Yang, Kuan
Rinholm, Johanne Egge
Bergersen, Linda H
Esbensen, Qin Ying
Sverkeli, Lars Jansen
Ziegler, Mathias
Attramadal, Håvard
Halvorsen, Bente
Aukrust, Pål
Yndestad, Arne
Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title_full Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title_fullStr Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title_full_unstemmed Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title_short Instability in NAD(+) metabolism leads to impaired cardiac mitochondrial function and communication
title_sort instability in nad(+) metabolism leads to impaired cardiac mitochondrial function and communication
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331182/
https://www.ncbi.nlm.nih.gov/pubmed/34343089
http://dx.doi.org/10.7554/eLife.59828
work_keys_str_mv AT lauritzenknuth instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT olsenmariabelland instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT ahmedmohammedshakil instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT yangkuan instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT rinholmjohanneegge instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT bergersenlindah instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT esbensenqinying instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT sverkelilarsjansen instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT zieglermathias instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT attramadalhavard instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT halvorsenbente instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT aukrustpal instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication
AT yndestadarne instabilityinnadmetabolismleadstoimpairedcardiacmitochondrialfunctionandcommunication